Temperature characteristics of a simple current mirror on silicon high-voltage nLDMOS with a large DRIFT area

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The results of a study of the temperature characteristics of a simple current mirror on high-voltage SOI nLDMOS transistors with a large drift area with topological norms of 0.5 microns in an extended range of external temperatures are discussed. The characteristics of a simple current mirror at temperatures of –60, 25, 125 °C have been experimentally studied. A mathematical model of a high-voltage nLDMOS transistor with a large DRIFT region has been developed for static operation in the field of high drain voltages and a wide range of ambient temperatures. Based on the results of experimental and numerical studies, a temperature range has been established in which the transfer characteristic of the current mirror retains linearity. It is 300 °C from –110 to 190 °C in the control voltage range from 25 to 55 V. In the same temperature range, the transmission coefficient (specularity) depends linearly on the input current level. Based on the data obtained, the conditions for determining the SOA of a simple current mirror on SOI LDMOS transistors are formulated.

Texto integral

Acesso é fechado

Sobre autores

A. Novoselov

Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”

Autor responsável pela correspondência
Email: volkov@niisi.ras.ru
Rússia, Moscow

M. Gusev

Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”

Email: volkov@niisi.ras.ru
Rússia, Moscow

N. Masal’skii

Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”

Email: volkov@niisi.ras.ru
Rússia, Moscow

Bibliografia

  1. Razavi B. Design of Analog CMOS Integrated Circuits. McGraw-Hill International Edition, 782, 2001, ISBN: 978-0-07-252493-2.
  2. Gray P.R., Hurst P.J., Lewis S.H., Meyer R.G. Analysis and Design of Analog Integrated Circuits. J. Wiley & Sons, 4th edition, 889, 2001, ISBN: 978-0471321682
  3. Pozar D.M. Microwave Engineering, 3rd ed. New York: Wiley, 728, 2005, ISBN: 9788126510498
  4. Gregorian R. Introduction to CMOS Op-Amps and Comparators. J. Wiley & Sons, 360, 1999, ISBN: 9780471317784
  5. Lan M.F., Tammineedi A., Geiger R. Current mirror layout strategies for enhancing matching performance // Analog Integrated Circuits and Signal Processing. 2001. V. 28. P. 9–26. https://doi.org/10.1023/A:1011237602078
  6. Bushnell M.L, Agrawal V.D. Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits. Springer, 690. 2000. ISBN: 9780792379911
  7. Souliotis G., Haritantis I. Current-mode filters based on current mirror arrays // Int. J. Circuit Theory Appl. 2008. V. 36. P. 173–183. https://doi.org/10.1002/cta.419
  8. Tehranipoor M.M., Guin U., Forte D. Counterfeit Integrated Circuits: Detection and Avoidance. Springer, 289, 2015. ISBN: 978-3319118239
  9. Senani R., Bhaskar D., Singh A.K., Singh V.K. Current Feedback Operational Amplifiers and Their Applications. New York, NY, USA: Springer, 249, 2013. ISBN: 978-1461451877
  10. Theeuwen S.J.C.H., Qureshi J.H. LDMOS technology for RF power amplifiers // IEEE Trans. on Microwave Theory and Techniques (special issue on Power Amplifiers) // 2012. V. 60. Issue 6. Part 2. P. 1755–1763. https://doi.org/10.1109/TMTT.2012.2193141
  11. International Technology Roadmap for Semiconductors (ITRS) Interconnect, 2020 Edition. [Online] Available: https://irds.ieee.org/editions/2020 (data access 22.06.2024)
  12. Rumyantsev S.V., Novoselov A.S., Masalsky N.V. Study of the effect of self-heating in high-voltage SOI transistor with a large drift region // Russian Microelectronics. 2022. V. 51. № 5. P. 325–333. https://doi.org/ 10.1134/S1063739722050080
  13. Aggarwal B., Gupta M., Gupta A.K. A comparative study of various current mirror configurations: Topologies and characteristics // Microelectron. J. 2016. V. 53. P. 134–155. https://doi.org/10.1016/j.mejo.2016.04.015
  14. Guin U, Forte D, Tehranipoor M. Design of accurate low-cost on-chip structures for protecting integrated circuits against recycling // IEEE Trans Very Large Scale Integr (VLSI) Syst. 2016. V. 24. P. 1233–1246. https://doi.org/10.1109/TVLSI.2015.2466551
  15. Baker R.J. CMOS: Circuit Design, Layout, and Simulation. IEEE Press Series on Microelectronic Systems, 1208, 2010. ISBN: 9780470881323
  16. Nanoelectronics: Devices, Circuits and Systems. Editor by Brajesh Kumar Kaushik. Elsevier, 476, 2018. ISBN: 9780128133545
  17. Mukherjee C., Ardouin B., Dupuy J-Y.,Nodjiadjim V., Riet M., Zimmer T. Reliability-aware circuit design methodology for beyond-5G communication systems // IEEE Trans. Dev. Mat. Reliab.2017. V. 17. No. 3. P. 490–506. https://doi.org/10.1109/TDMR.2017.2710303
  18. Jindal C., Pandey R. A high output resistance, wide bandwidth, and low input resistance current mirror using flipped voltage follower cell // Int. J. Circuit Theory Appl. 2021. V. 49. P. 3286–3301. https://doi.org/10.1002/cta.3085
  19. Aggarwal B. Novel current mirrors based on folded flipped voltage follower configuration // Wireless Personal Communications. 2022. V. 123. P. 645–653. https://doi.org/10.1007/s11277-021-09150-3
  20. Huang J., Wang C., Zhou T., Lu W., Zhao Y., Liu Y., Li Y. A shifting current mirror driver circuit for electrical impedance tomography applications // IEEE Trans. Circuits Syst. II Express Briefs. 2023. V. 70. P. 3832–3836. https://doi.org/10.1109/TCSII.2023.3288909
  21. Kumngern M., Khateb F., Kulej T. A Novel multiple-input single-output current-mode shadow filter and shadow oscillator using current-controlled current conveyors // Circuits Syst. Signal Process. 2024. V. 43. P. 5438–5462. https://doi.org/10.1007/s00034-024-02729-8
  22. de Jong M.J., Salm C., Schmitz J. Effect of ambient on the recovery of hot-carrier degraded devices // In Proceedings of the 2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 28 April–3 May 2020. P. 1–6. https://doi.org/10.1109/IRPS45951.2020.9129540
  23. Novoselov A.S., Masalsky N.V. Influence of hot carrier degradation on the characteristics of a high-voltage SOI transistor with a large drift region // Russian Microelectronics. 2023. V. 52. № 5. P. 411–418. https://doi.org/10.1134/s1063739723700580
  24. Novoselov A.S., Gusev M.R., Masal’skii N.V. Temperature dependencies of the breakdown voltage of a high-voltage SOI LDMOS transistor // Russian Microelectronics. 2024. V. 53. № 5. P. 456–463, https://doi.org/10.1134/s1063739724600547
  25. Fayyaz A., Castellazzi A. High temperature pulsed-gate robustness testing of SiC power MOSFETs // Microelectronics Reliability. 2015. V. 55. Issues 9-10. P. 1724–1728. https://doi.org/10.1016/j.microrel.2015.06.141
  26. Shrivastava A., Pandey R., Jindal C. Low-voltage flipped voltage follower cell based current mirrors for high frequency applications // Wireless Personal Communication. 2020. V. 111. P. 143–161. https://doi.org/10.1007/s11277-019-06849-2

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Simple current mirror circuit

Baixar (8KB)
3. Fig. 2. Iout(Uds) dependence at constant T = 25 °C and different Iin: 10 μA (1); 0.05 mA (2); 0.1 mA (3). The inset shows the Iout(Uds) dependence for Iin = 10 μA in the same coordinates as the main figure, but with a greater increase in current

Baixar (28KB)
4. Fig. 3. Iout(Iin) dependences at constant Uds = 55 V and different T: –60 °C (1); 25 °C (2); 125 °C (3)

Baixar (17KB)
5. Fig. 4. Iout(T) dependences. Output current in Iout 1 10–4 A (for better perception of the calculated and experimental data) at different values of the input current. Simulation results are a solid line, experimental data are dots connected by a dotted line. Upper group (pair) – current Iin 1 10–4 A, middle group – current Iin 0.5 10–4 A, lower group – current Iin 0.25 10–4 A

Baixar (21KB)
6. Fig. 5. Dependence k_T (Iin). Simulation results – solid line, experimental data – points connected by a dotted line

Baixar (20KB)
7. Fig. 6. Dependence k_T_norm (Iin_norm)

Baixar (19KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025