ПРИБЛИЖЕННОЕ РЕШЕНИЕ ОБРАТНОЙ ГРАНИЧНОЙ ЗАДАЧИ ДЛЯ СИНГУЛЯРНО ВОЗМУЩЕННОЙ СИСТЕМЫ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрена начально-краевая задача для сингулярно возмущённой системы уравнений с частными производными. Поставлена обратная задача, состоящая в определении неизвестного граничного условия по одной из компонент решения начально-краевой задачи, заданной в фиксированной точке пространства. Предложены методы приближённого решения обратной задачи, основанные на использовании разложения решения начально-краевой задачи по малому параметру

Об авторах

А. М. Денисов

Московский государственный университет имени М.В. Ломоносова

Email: den@cs.msu.ru
Russia

С. И. Соловьева

Московский государственный университет имени М.В. Ломоносова

Email: sol@cs.msu.ru
Russia

Список литературы

  1. Тихонов, А.Н. Уравнения математической физики : учеб. пособие / А.Н. Тихонов, А.А. Самарский. — 6-е изд., испр. и доп. — М. : Изд-во Моск. ун-та, 1999. — 742 c.
  2. Tikhonov, A.N. and Samarskii, A.A., Equations of Mathematical Physics, London–New York: Pergamon Press, 1963.
  3. Денисов, А.М. Приближённое решение обратных задач для уравнения теплопроводности с сингулярным возмущением / А.М. Денисов // Журн. вычислит. математики и мат. физики. — 2021. — Т. 61, № 12. — С. 2040–2049.
  4. Denisov, A.M. Approximate solution of inverse problems for the heat equation with a singular perturbation, Comput. Math. Math. Phys., 2021, vol. 61, no. 12, pp. 2004–2014.
  5. Денисов, А.М. Приближённое решение обратной задачи для интегродифференциального уравнения теплопроводности с сингулярным возмущением / А.М. Денисов // Журн. вычислит. математики и мат. физики. — 2023. — Т. 63, № 5. — С. 702–709.
  6. Denisov, A.M. Approximate solution of an inverse problem for a singularly perturbed integro-differential heat equation, Comput. Math. Math. Phys., 2023, vol. 63, no. 5, pp. 837–844.
  7. Денисов, А.М. Аппроксимация решения обратной задачи для сингулярно возмущённой системы уравнений в частных производных / А.М. Денисов // Дифференц. уравнения. — 2023. — Т. 59, № 6. — C. 746–751.
  8. Denisov, A.M., Approximation of solution of an inverse problem for singularly perturbed system partial differential equations, Differ. Equat., 2023, vol. 59, no. 6, pp. 762–768.
  9. Латтес, Р. Метод квазиобращения и его приложения / P. Латтес, Ж.-Л. Лионс. — М. : Мир, 1970. — 336 c.
  10. Latt`es, R. and Lions, J.-L., M/ethode de Quasi-R/eversibilit/e et Applications, Paris: Dunod, 1967.
  11. Иванов, В.К. Задача квазиобращения для уравнения теплопроводности в равномерной метрике / В.К. Иванов // Дифференц. уравнения. — 1972. — Т. 8, № 4. — С. 652–658.
  12. Ivanov, V.K., Problem of quasi inversion for the heat equation in uniform metric, Differ. Uravn., 1972, vol. 8, no. 4, pp. 643–649.
  13. Самарский, А.А. Численные методы решения обратных задач математической физики / А.А. Самарский, П.Н. Вабищевич. — М. : Едиториал УРСС, 2004. — 480 c.
  14. Samarskii, A.A. and Vabishchevich, P.N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Berlin–New York: De Gruyter, 2007.
  15. Короткий, А.И. Численное моделирование обратных ретроспективных задач тепловой конвекции с приложениями к задачам геодинамики / А.И. Короткий, И.А. Цепелев, А.Е. Исмаил-заде // Изв. Урал. гос. ун-та. Сер. Математика. Механика. Информатика. — 2008. — № 58, вып. 11. — С. 78–87.
  16. Korotkii, A.I., Tsepelev, I.A., and Ismail-zade, A.T., Numerical modeling of inverse retrospective thermal convection problems with applications to geodynamic problems, Izv. Ural. Univ. Ser. Math. Mech. Inform., 2008, no. 58, pp. 78–87.
  17. Табаринцева, Е.В. О решении граничной обратной задачи для параболического уравнения методом квазиобращения / Е.В. Табаринцева, Л.Д. Менихес, А.Д. Дрозин // Вестн. Южно-Урал. гос. ун-та. Сер. Математика. Механика. Физика. — 2012. — № 6. — С. 8–13.
  18. Tabarintseva, E.V., Menikhes, L.D., and Drozin, A.D., On solving a boundary inverse problem by the quasiinversion method, Vest. Yuzno-Ural. Gos. Univ. Ser. Mat. Mech. Fiz., 2012, no. 6, pp. 8–13.
  19. Belov, Yu.Ya. Determination of source function in composite type system of equations / Yu.Ya. Belov, V.G. Kopylova // Журн. Сиб. федерал. ун-та. Сер. Математика и физика. — 2014. — Т. 7, № 3. — С. 275–288.
  20. Belov, Yu.Ya. and Kopylova, V.G., Determination of source function in composite type system of equations, J. of Siberian Fed. Univ. Math. & Phys., 2014, vol. 7, no. 3, pp. 275–288.
  21. Денисов, А.М. Численное решение обратных задач для гиперболического уравнения с малым параметром при старшей производной / А.М. Денисов, С.И. Соловьева // Дифференц. уравнения. — 2018. — Т. 54, № 7. — С. 919–928.
  22. Denisov, A.M. and Solov’eva, S.I., Numerical solution of inverse problems for a hyperbolic equation with a small parameter multiplying the highest derivative, Differ. Equat., 2018, vol. 54, no. 7, pp. 900–910.
  23. Lukyanenko, D.V. Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction–diffusion–advection equation / D.V. Lukyanenko, M.A. Shishlenin, V.T. Volkov // J. Inverse and Ill posed Problems. — 2019. — V. 27, № 5. — P. 745–758.
  24. Lukyanenko, D.V., Shishlenin, M.A., and Volkov, V.T., Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction–diffusion–advection equation, J. Inverse and Ill posed Problems, 2019, vol. 27, no. 5, pp. 745–758.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024