Gut microbiota and obesity: Pathogenetic relationships and ways to normalize the intestinal microflora


Cite item

Full Text

Abstract

The review demonstrates mechanisms in the relationship of obesity to gut microbiota, as well as possible therapeutic measures to normalize the intestinal microflora. There is evidence that the latter makes a great contribution to the pathogenesis of obesity and related diseases. Investigations have shown the role of the nature of consumed foods (fatty foods) in reducing the amount of bifidobacteria and lactobacilli, as well as the effects of bacterial lipopolysaccharides and metabolites from the intestinal microflora (trimethylamine-N-oxide, bile acids, etc.). The use of prebiotics, probiotics and ursodeoxycholic acid preparations and fecal transplantation are promising in correcting the microflora and in providing their positive effect on metabolic disturbances. Certain probiotic strains are effective in treating dyslipidemia, diabetes mellitus, obesity, and metabolic syndrome. Gut microbiota is impaired in obesity and contributes to the development of cardiovascular diseases. The control of the gut microbiota and the use of drugs altering the composition of the microflora may become a novel approach to reducing the risk of cardiovascular diseases.

About the authors

O M Drapkina

O N Korneeva

References

  1. Бойцов С.А., Баланова Ю.А., Шальнова С.А., Деев А.Д., Артамонова Г.в., Гатагонова Т.М. и др. Артериальная гипертония среди лиц 25—64 лет: распространенность, осведомленность, лечение и контроль. По материалам исследования ЭССЕ. Кардиоваскулярная терапия и профилактика. 2014;13(4):4-14. doi: 10.15829/1728-8800-2014-4-4-14
  2. Tappy L. Metabolic consequences of overfeeding in humans. Curr Opin Clin Nutr Metab Care. 2004;7(6):623-628. doi: 10.1097/00075197-200411000-00006
  3. Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care. 2007;10(6):729-734. doi: 10.1097/MCO.0b013e3282efdebb
  4. Xu J, Gordon JI. Inaugural Article: Honor thy symbionts. Proc Natl Acad Sci USA. 2003;100(18):10452-10459. doi: 10.1073/pnas.1734063100
  5. Leser TD. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol. 2009;11:2194-2206. doi: 10.1111/j.1462-2920.2009.01941
  6. Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4:232-241. doi: 10.1038/ismej.2009.112
  7. Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: How prebiotic can work? Br J Nutr. 2013;109(Suppl 2):S81-85. doi: 10.1017/S0007114512004047
  8. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576-585. doi: 10.1038/nm.3145
  9. Кашух Е.А., Ивашкин В.Т. Пробиотики, метаболизм и функциональное состояние сердечно-сосудистой системы. Российский журнал гастроэнтерологии гепатологии и колопроктологии. 2016;25(1):8-14. doi:http://www.gastro-j.ru/files/8_14_1458841626.pdf
  10. Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124(10):4204-4211. doi: 10.1172/JCI72331
  11. Ufnal M. Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. Can J Cardiol. 2014;30(12):1700-1705. doi: 10.1038/nature09922
  12. Tang WH, Wang Z, Wu Y, Fan Y, Koeth RA. Prognostic Value of Elevated Levels of Intestinal Microflora-Generated Metabolite Trimethylamine N-Oxide in Patients with Heart Failure: The Gut Hypothesis Revisited. JACC. 2013;61(10). doi: 10.1016/S0735-1097(13)60750-0
  13. Драпкина О.М., Корнеева О.Н., Ивашкин В.Т. Микрофлора кишечника и ожирение. Российские медицинские вести. 2014;19(2):12-16. doi:http://medlib.dp.gov.ua:8087/jirbis2/images/fond_publications/rossiyskie_medicinskie_vesti/rmv214.pdf
  14. Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286-92. doi: 10.1016/s0084-3741(08)79070-x
  15. Clemente Postigo M, Queipo Ortuño MI, Murri M, Boto Ordoñez M, Pérez Martínez P, Andres Lacueva C et al. Endotoxin increase after fat overload is related to postprandial hypertriglyceridemia in morbidly obese patients. J Lipid Res. 2012;53:973-978. doi: 10.1194/jlr.P020909
  16. Caricilli AM, Saad MJ. The role of gut microbiota on insulin resistance. Nutrients. 2013;5:829-851. doi: 10.3390/nu5030829
  17. Cani PD, Amar J, Iglesia MA, Poggi M, Knauf C, Bastelica D et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761-1772. doi: 10.2337/db06-1491
  18. Al-Attas O, Al-Daghri N, Al-Rubeaan K. Changes in endotoxin levels in T2 DM subjects on anti-diabetic therapies. Cardiovasc Diabet. 2009;8:20-29. doi: 10.1186/1475-2840-8-20
  19. Rodes L, Khan A, Paul A, Coussa-Charley M, Marinescu D, Tomaro-Duchesneau C et al. Effect of probiotics Lactobacillus and Bifidobacteriumon gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. J Microbiol Biotechnol. 2013;23:518-526. doi: 10.4014/jmb.1205.05018
  20. Корниенко Е.А., Нетребенко О.К. Ожирение и кишечная микробиота: современная концепция взаимосвязи. Педиатрия. 2012;91(2):110-122. doi:http://www.pediatriajournal.ru/files/upload/mags/321/2012_2_3389.pdf
  21. Erejuwa OO, Sulaiman SA, Wahab M. SW. Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges. Int J Mol Sci. 2014;15:4158-4188. doi: 10.3390/ijms15034158
  22. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U.S.A. 2007;104:979-984. doi: 10.1073/pnas.0605374104
  23. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174-180. doi: 10.1038/nature09944
  24. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99-103. doi: 10.1038/nature12198
  25. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691-14696. doi: 10.1073/pnas.1005963107
  26. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57-63. doi: 10.1038/nature09922
  27. Zimmer J, Lange B, Frick J, Sauer H, Zimmermann K, Schwiertz A et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2011;66:53-60. doi: 10.1038/ejcn.2011.141
  28. Liszt K, Zwielehner J, Handschur M, Hippe B, Thaler R, Haslberger AG. Characterization of bacteria, clostridia and bacteroides in faeces of vegetarians using qPCR and PCR-DGGE fingerprinting. Ann Nutr Metab. 2009;54:253-257. doi: 10.1159/000229505
  29. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105-108. doi: 10.1126/science.1208344
  30. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220-230. doi: 10.1038/ismej.2010.118
  31. Roberfroid MB, Prebiotics and probiotics: are they functional foods? Am J Clin Nutr. 2000;71(6 Suppl):1682S-7S;discussion 1688S-90S. doi: 10.1007/978-3-642-56623-3_9
  32. Cani PD, Neyrinck AM, Malon N, Delzenne NM. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide 1. Obes Res. 2005;13(6):1000-1007. doi: 10.1038/oby.2005.117
  33. Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-dietinduced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50:2374-2383. doi: 10.1007/s00125-007-0791-0
  34. Rault-Nania M, Gueux E, Demougeot C et al. Inulin attenuates atherosclerosis in apolipoprotein E-deficient mice. Br J Nutr. 2006;96:840-844. doi: 10.1017/BJN20061913
  35. Parnell JA, Reimer RA. Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes. 2012;3(1):29-34. doi: 10.4161/gmic.19246
  36. Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15:1546-1558. doi: 10.2174/138161209788168164
  37. Tsukumo DM, Carvalho BM, Carvalho-Filho MA, Saad MJ. Translational research into gut microbiota: new horizons in obesity treatment. Arq Bras Endocrinol Metab. 2009;53(2):139-144. doi: 10.1590/S0004-27302009000200004
  38. Lee HY, Park JH, Seok SH et al. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta. 2006;1761(7):736-744. doi: 10.1590/s0004-27302009000200004
  39. Lee SJ, Bose S, Seo JG, Chung WS, Lim CY, Kim H. The effects of co-administration of probiotics with herbal medicine on obesity, metabolic endotoxemia and dysbiosis: A randomized double-blind controlled clinical trial. Clin Nutr. 2014;33(6)973-81. doi: 10.1016/j.clnu.2013.12.006
  40. Ардатская М.Д. Масляная кислота и инулин в клинической практике: теоретические аспекты и возможности клинического применения. Под ред. Ардатской М.Д. М.: Форте принт; 2014.
  41. Di Baise JK, Zhang H, Crowell MD et al. Gut microbiota and its relationship with obesity. Mayo Clin Proc. 2008;83(4):460-469. doi: 10.4065/83.4.460
  42. Weingarden Alexa. Mechanisms of Fecal Microbiota Transplantation and Development of Novel Therapies for Clostridium difficile Infection. Retrieved from the University of Minnesota Digital Conservancy. 2015. doi:http://hdl.handle.net/11299/175365
  43. Song Y, Garg S, Girotra M, Maddox C, von Rosenvinge EC et al. Microbiota Dynamics in Patients Treated with Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. PLoS ONE. 2013;8(11):e81330. doi: 10.1371/journal.pone.0081330
  44. Dutta SK, Girotra M, Garg S, Dutta A, Rosenvinge EC, Maddox C, Song Y, Bartlett JG, Vinayek R, Fricke WF. Efficacy of Combined Jejunal and Colonic Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Clin Gastroenterol Hepatol. 2014;12:1572-1576. doi: 10.1016/j.cgh.2013.12.032

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies