Lipoprotein(a), its autoantibodies, and circulating T lymphocyte subpopulations as independent risk factors for coronary artery atherosclerosis

Abstract

Aim. To study the role of lipoprotein(a) [Lp(a)] as a potential autoantigen causing the activation of immunocompetent cells in atherosclerosis. Subjects and methods. A total of 104 men with stable coronary artery (CA) disease and different degrees of progressive coronary atherosclerosis were examined. Clinical blood analysis was carried out and lymphocyte subpopulations (CD4+, Th1, Th17, and Treg) were determined using immunofluorescence and flow cytometry. In addition, the indicators of blood lipid composition, Lp(a), autoantibody (autoAb) titer to Lp(a), and low-density lipoproteins (LDL), and the lymphocyte activation marker sCD25 were also measured. Results. The Lp(a) level was shown to predict the severity of CA lesions (β=0.28, p<0.05), regardless of age, the level of cholesterol, different T-lymphocyte subpopulations, sCD25, and autoAb. A combination of the concentration of Lp(a) above 11.8 mg/dl, that of Th17 over 11.4∙103 cells/ml and the reduced levels of regulatory T cells and IL-10-producing CD4+ T cells showed a manifold increase in the risk of severe and progressive CA atherosclerosis. There was a direct correlation of the blood level of Th1 with that of IgG autoAb specific to all atherogenic apoB-containing lipoproteins, including Lp(a). There was an inverse correlations of the lymphocyte activation marker sCD25 with IgM anti-Lp(a) autoAb titers (r=–0.36; p<0.005), but this was less significant with autoAbs to native and oxidized LDL (r=–0.21 and r=–0.24; p<0.05, respectively). Conclusion. The slightly elevated Lp(a) concentration along with changes in the level of T lymphocyte subpopulations was first shown to significantly potentiate the risk of progressive and multiple CA lesion in the examinees. The correlation of IgM anti-Lp(a) autoAb with the lymphocyte activation marker sCD25 and that of IgG anti-Lp(a) autoAb with Th1 have demonstrated that Lp(a) is involved in the autoimmune inflammatory processes in atherosclerosis.

References

  1. Whitman SC, Ravisankar P, Elam H, Daugherty A. Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E–/– mice. Am J Pathol. 2000;157(6):1819-24. doi: 10.1016/S0002-9440(10)64820-1
  2. Laurat E, Poirier B, Tupin E, Caligiuri G, Hansson GK, Bariéty J, Nicoletti A. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation. 2001;104(2):197-202. doi: 10.1161/01.CIR.104.2.197
  3. Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clin Immunol. 2010;134(1):33-46. doi: 10.1016/j.clim.2009.07.002
  4. Gao Q, Jiang Y, Ma T, Zhu F, Gao F, Zhang P, et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol. 2010;185(10):5820-5827. doi: 10.4049/jimmunol.1000116
  5. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133-1141. doi: 10.1038/ni1261
  6. Liuzzo G, Trotta F, Pedicino D. Interleukin-17 in atherosclerosis and cardiovascular disease: the good, the bad, and the unknown. Eur Heart J. 2013;34(8):556-559. doi: 10.1093/eurheartj/ehs399
  7. . Климов А.Н. Аутоиммунная теория атерогенеза и концепция модифицированных липопротеидов. Вестник АМН СССР. 1990;11:30-36.
  8. Gabriel Virella, Maria F. Lopes-VirellaюAtherogenesis and the humoral immune response to modified lipoproteins. Atherosclerosis. 2008;200:239-246. doi: 10.1016/j.atherosclerosis.2008.03.025
  9. Carbone F, Nencioni A, Mach F et al. Evidence on the pathogenic role of auto-antibodies in acute cardiovascular diseases. Thrombos Haemostas. 2013;109(5):769-975. doi: 10.1160/TH12-10-0768
  10. Lehtimäki T, Lehtinen S, Solakivi T, Nikkilä M, Jaakkola O, Jokela H, Ylä-Herttuala S, Luoma JS, Koivula T, Nikkari T. Autoantibodies against oxidized low density lipoprotein in patients with angiographically verified coronary artery disease. Arterioscler Thromb Vasc Biol. 1999;19(1):23-27. doi: 10.1161/01.ATV.19.1.23
  11. Salonen JT, Ylä-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssönen K, Palinski W, Witztum JL. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992;11;339(8798):883-887. doi: 10.1016/0140-6736(92)90926-t
  12. Nordestgaard BG, Chapman MJ et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31:2844-2853. doi: 10.1093/eurheartj/ehq386
  13. Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Int Med. 2013;273(1):6-30. doi: 10.1111/j.1365-2796.2012.02592.x.
  14. Marcovina SM, Koschinsky ML, Albers JJ, SkarlatosS . Report of the National Heart, Lung, and Blood Institute Workshop on Lipoprotein(a) and Cardiovascular Disease: recent advances and future directions. Clin Chem. 2003;49(11):1785-1796. doi: 10.1373/clinchem.2003.023689
  15. Ежов М.В., Афанасьева О.И., Камбегова А.А., Афанасьева М.И., Трухачева Е.П., Наумов В.Г., Покровский С.Н. Роль факторов риска атеросклероза в развитии ишемической болезни сердца у мужчин молодого возраста. Терапевтический архив. 2009;5:50-53.
  16. van Dijk RA, Kolodgie F, Ravandi A, et al. Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J Lipid Res. 2012;53(12):2773-2790. doi: 10.1194/jlr.P030890
  17. Baldo G, Giunco S, Kontothanassis D et al. Different apoprotein(a) isoform proportions in serum and carotid plaque. Atherosclerosis. 2007;193(1):177-185. doi: 10.1016/j.atherosclerosis.2006.06.006
  18. Афанасьева О.И., Клесарева Е.А., Левашов П.А., Берестецкая Ю.В., Ежов М.В., Артемьева Н.В., Покровский С.Н. Аутоантитела против липопротеида(а) у больных с ишемической болезнью сердца. Кардиология. 2014;54(6):4-8.
  19. Афанасьева О.И., Адамова И.Ю., Беневоленская Г.Ф., Покровский С.Н. Иммуноферментный метод определения липопротеида(а). Бюллетень экспериментальной биологии и медицины. 1995;120(10):398-401. doi: 10.1007/bf02444976
  20. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest. 1968;97(Suppl.):77-89.
  21. Hoffmann HJ. Malling TM, Topcu A,Ryder LP, Nielsen KR, Varming K, Dahl R, Omland O, Sigsgaard T. CD4dimCD25brightTreg cell frequencies above a standardized gating threshold are similar in asthmatics and controls. Cytometry. 2007;71(6):371-378. doi: 10.1002/cyto.a.20389
  22. Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B Cells) Immunity and Control by Dendritic Cells in Atherosclerosis. Circ Res. 2014;114:1640-1660. doi: 10.1161/CIRCRESAHA.114.302761
  23. Brusko TM, Wasserfall CH, Hulme MA, Cabrera R, Schatz D, Atkinson, MA. Influence of membrane CD25 stability on T lymphocyte activity: implications for immunoregulation. PLoS One. 2009;4(11):e7980. doi: 10.1371/journal.pone.0007980
  24. Hoeger PH, Niggemann B, Ganschow R, Dammann C, Haeuser G. Serum levels of sCD23 and sCD25 in children with asthma and in healthy controls. Allergy. 1994;49(4):217-221. doi: 10.1111/j.1398-9995.1994.tb02652.x
  25. Kyaw T, Tipping P, Bobik A, Toh BH. Protective role of natural IgM-producing B1a cells in atherosclerosis. Trends Cardiovasc Med. 2012;22:48-53. doi: 10.1016/j.tcm.2012.06.011
  26. Kyaw T-, Tay C, Khan A, Dumouchel V, Cao A, To K, Kehry M, Dunn R, Agrotis A, Tipping P, Bobik A, Toh BH. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J Immunol. 2010;185(7):4410-4419. doi: 10.4049/jimmunol.1000033
  27. Tsiantoulas D, Diehl CJ, Witztum JL, Binder CJ. B Cells and Humoral Immunity in Atherosclerosis. Circ Res. 2014;114(11):1743-1756. doi: 10.1161/circresaha.113.301145

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies