Influence of activator concentration on spectral-luminescence and scintillation properties of YAG:Ce crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The luminescence and scintillation properties of  YAG:Ce crystals grown from the melts in vacuum has been analysed. We have investigated absorption spectra, X-ray excited luminescence (XRL), XRL decay kinetics and scintillation light yield in a wide range of activator concentrations (from 0.0036 at.% to 1.175 at.% substitution  of  Y in the c-positions of  garnet structure). The effective quenching of the intrinsic luminescence of antisite and vacancy defects of the crystal in the UV region with increasing activator concentration has been determined. The optimal concentration of the activator has been determined in order to increase the XRL intensity and the light output of scintillations of Сe3+ ions, taking into account the technological peculiarities of growing optically perfect single crystals with high concentration of Сe3+ ions by using the method of horizontal directional crystallisation in vacuum. The relations between the XRL kinetics and the activator concentration have been investigated. It has showed the possibility to obtain crystals with photon yield up to 25,000 ph/MeV.

Texto integral

Acesso é fechado

Sobre autores

V. Fedorov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: fedorov-metrology@yandex.ru
Rússia, Moscow

E. Antonov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: fedorov-metrology@yandex.ru
Rússia, Moscow

I. Venevtsev

Peter the Great St. Petersburg Polytechnic University

Email: fedorov-metrology@yandex.ru
Rússia, St. Petersburg

V. Kanevsky

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: fedorov-metrology@yandex.ru
Rússia, Moscow

B. Nabatov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: fedorov-metrology@yandex.ru
Rússia, Moscow

E. Saltanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University)

Email: fedorov-metrology@yandex.ru
Rússia, Москва; Dolgoprudny

Bibliografia

  1. Kaminskii A.A. Laser Crystals. Springer-Verlag, 1990. 456 p. https://doi.org/10.1007/978-3-540-70749-3_6
  2. Lecoq P., Gektin A., Korzhik M. Inorganic scintillators for detector systems. Switzerland: Springer, 2017. 408 p. https://doi.org/10.1007/978-3-319-45522-8_1
  3. Петросян А.Г. Физика и спектроскопия лазерных кристаллов / Под ред. Каминского А.А. М.: Наука, 1986. 235 с.
  4. Багдасаров Х.С. Высокотемпературная кристаллизация из расплава. М.: Физматлит, 2004. 160 с.
  5. Zhaoa G., Zenga X., Xua J. et al. // J. Cryst. Growth. 2003. V. 253. P. 290. https://doi.org/10.1016/S0022-0248(03)01017-0
  6. Зоренко Ю.В., Савчин В.П., Горбенко В.И. и др. // ФТТ. 2011. Т. 53. Вып. 8. С. 1542.
  7. Нижанковский С.В., Данько А.Я., Зеленская О.В. и др. // Письма в ЖТФ. 2009. Т. 35. Вып. 20. С. 77.
  8. Ashurov M.Kh., Voronko Yu.K., Osiko V.V., Sobol A.A. // Phys. Status Solidi. A. 1977. V. 42. P. 101.
  9. Zorenko Y., Zorenko T., Gorbenko V.V. et al. // Opt. Mater. 2012. V. 34. № 8. P. 1314. https://doi.org/10.1016/j.optmat.2012.02.007
  10. Zorenko Y. // Phys. Status Solidi. C. 2005. V. 2. № 1. P. 375. https://doi.org/10.1002/pssc.200460275
  11. Shiran N., Gektin A., Gridin S. et al. // IEEE Trans. Nucl. Sci. 2018. V. 65. № 3. P. 871. https://doi.org/10.1109/TNS.2018.2797545
  12. Khanin V.M., Vrubel I.I., Polozkov R.G. et al. // J. Phys. Chem. C. 2019. V. 123. № 37. P. 22725. https://doi.org/10.1021/acs.jpcc.9b05169
  13. Zorenko Yu., Zych E., Voloshinovskii A. // Opt. Mater. 2009. V. 31. P. 1845. https://doi.org/10.1016/j.optmat.2008.11.026
  14. Pankratov V., Grigorjeva L., Millers D., Chudoba T. // Radiat. Meas. 2007. V. 42. № 4–5. P. 679. https://doi.org/10.1016/j.radmeas.2007.02.046
  15. Waetzig K., Kunzer M., Kinski I. // J. Mater. Res. 2014. V. 29. № 19. P. 2318. https://doi.org/10.1557/jmr.2014.229
  16. Кварталов В.Б., Федоров В.А., Буташин А.В., Каневский В.М. // Успехи в химии и химической технологии. 2022. Т. 36. № 7. С. 70.
  17. Rodnyi P.A., Mikhrin S.B., Mishin A.N., Sidorenko A.V. // IEEE Trans. Nucl. Sci. 2001. V. 48. № 6. P. 2340. https://doi.org/10.1109/23.983264
  18. Zorenko Y., Zorenko T., Gorbenko V.V. et al. // Opt. Mater. 2012. V. 34. № 8. P. 1314. https://doi.org/10.1016/j.optmat.2012.02.007
  19. Zorenko Yu., Voloshinovskii A., Savchyn V. et al. // Phys. Status Solidi. B. 2007. V. 244. P. 2180. https://doi.org/10.1002/pssb.200642431
  20. Bachmann V., Ronda C., Meijerink A. // Chem. Mater. 2009. V. 21. P. 2077. https://doi.org/10.1021/cm8030768
  21. Zorenko Y., Gorbenko V., Mihokova E. et al. // Radiat. Meas. 2007. V. 42. P. 521. https://doi.org/10.1016/j.radmeas.2007.01.045
  22. Khanin V., Venevtsev I., Spoor S. et al. // Opt. Mater. 2017. V. 72. P. 161. https://doi.org/10.1016/j.optmat.2017.05.040
  23. Zorenko Y., Voloshinovskii A., Savchyn V. et al. // Phys. Status Solidi. B. 2007. V. 244. № 6. P. 2180. https://doi.org/10.1002/pssb.200642431
  24. Буташин А.В., Веневцев И.Д., Федоров В.А. и др. // Кристаллография. 2023. T. 68. № 4. С. 594. https://doi.org/10.31857/S0023476123600234

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Absorption spectra of IAG crystal samples:Ce thickness d: 6 – d = 690, 7 – d = 443, 9 – d = 37, 12 – d = 65 microns. The curve numbers correspond to the sample numbers from Table 1

Baixar (118KB)
3. Fig. 2. RL spectra of YAG:Ce crystals. The curve numbers correspond to the sample numbers from Table 1

Baixar (200KB)
4. Fig. 3. Dependence of the RL intensity of IAG crystals:Ce at a wavelength of λ = 560 nm of crystals from the concentration of the activator: 1 – crystals grown by the GNC method, 2 – crystals obtained by spontaneous crystallization

Baixar (64KB)
5. Fig. 4. Dependences of the RF intensity at the wavelength λ = 560 nm of the YAG:Ce samples on time. The curve numbers correspond to the sample numbers from Table 1.

Baixar (289KB)
6. Fig. 5. Dependence of the integral contribution of various components of the kinetics of RL of IAG samples:Ce of cerium concentration: 1 – component 68 ns, 2 – component 1090 ns, 3 – intermediate component (190 ns)

Baixar (107KB)
7. Fig. 6. Dependence of the light output of scintillations of IAG crystals:Ce depends on the concentration of the activator: 1 – light output of Ce3+ ions, 2 – light output of the base; a – crystals grown by the GNC method, b – crystals obtained by spontaneous crystallization

Baixar (120KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024