Влияние концентрации активатора на спектрально-люминесцентные и сцинтилляционные характеристики кристаллов ИАГ:Cе

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Выполнен анализ люминесцентных и сцинтилляционных характеристик кристаллов иттрий-алюминиевых гранатов, активированных ионами церия, выращенных из расплавов в вакууме. Исследованы спектры поглощения, рентгенолюминесценции (РЛ), кинетики спада (затухания) РЛ и световыхода сцинтилляций в широком диапазоне концентраций активатора (от 0.0036 до 1.175 ат. % замещения иттрия в с-позициях структуры граната). Установлено эффективное тушение собственной люминесценции антиузельных и вакансионных дефектов кристалла-основы в УФ-области при увеличении концентрации активатора. Определена оптимальная концентрация активатора с целью увеличения интенсивности РЛ и величины световыхода сцинтилляций ионов Се3+, а также с учетом технологических особенностей выращивания методом горизонтальной направленной кристаллизации в вакууме оптически совершенных монокристаллов с высокой концентрацией ионов Се3+. Исследованы зависимости кинетики РЛ от концентрации активатора. Показана возможность получения кристаллов с величиной световыхода до 25000 фот/МэВ.

Полный текст

Доступ закрыт

Об авторах

В. А. Федоров

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Автор, ответственный за переписку.
Email: fedorov-metrology@yandex.ru
Россия, Москва

Е. В. Антонов

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: fedorov-metrology@yandex.ru
Россия, Москва

И. Д. Веневцев

Санкт-Петербургский политехнический университет Петра Великого

Email: fedorov-metrology@yandex.ru
Россия, Санкт-Петербург

В. М. Каневский

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: fedorov-metrology@yandex.ru
Россия, Москва

Б. В. Набатов

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: fedorov-metrology@yandex.ru
Россия, Москва

Е. С. Салтанова

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”; Московский физико-технический институт

Email: fedorov-metrology@yandex.ru
Россия, Москва; Долгопрудный

Список литературы

  1. Kaminskii A.A. Laser Crystals. Springer-Verlag, 1990. 456 p. https://doi.org/10.1007/978-3-540-70749-3_6
  2. Lecoq P., Gektin A., Korzhik M. Inorganic scintillators for detector systems. Switzerland: Springer, 2017. 408 p. https://doi.org/10.1007/978-3-319-45522-8_1
  3. Петросян А.Г. Физика и спектроскопия лазерных кристаллов / Под ред. Каминского А.А. М.: Наука, 1986. 235 с.
  4. Багдасаров Х.С. Высокотемпературная кристаллизация из расплава. М.: Физматлит, 2004. 160 с.
  5. Zhaoa G., Zenga X., Xua J. et al. // J. Cryst. Growth. 2003. V. 253. P. 290. https://doi.org/10.1016/S0022-0248(03)01017-0
  6. Зоренко Ю.В., Савчин В.П., Горбенко В.И. и др. // ФТТ. 2011. Т. 53. Вып. 8. С. 1542.
  7. Нижанковский С.В., Данько А.Я., Зеленская О.В. и др. // Письма в ЖТФ. 2009. Т. 35. Вып. 20. С. 77.
  8. Ashurov M.Kh., Voronko Yu.K., Osiko V.V., Sobol A.A. // Phys. Status Solidi. A. 1977. V. 42. P. 101.
  9. Zorenko Y., Zorenko T., Gorbenko V.V. et al. // Opt. Mater. 2012. V. 34. № 8. P. 1314. https://doi.org/10.1016/j.optmat.2012.02.007
  10. Zorenko Y. // Phys. Status Solidi. C. 2005. V. 2. № 1. P. 375. https://doi.org/10.1002/pssc.200460275
  11. Shiran N., Gektin A., Gridin S. et al. // IEEE Trans. Nucl. Sci. 2018. V. 65. № 3. P. 871. https://doi.org/10.1109/TNS.2018.2797545
  12. Khanin V.M., Vrubel I.I., Polozkov R.G. et al. // J. Phys. Chem. C. 2019. V. 123. № 37. P. 22725. https://doi.org/10.1021/acs.jpcc.9b05169
  13. Zorenko Yu., Zych E., Voloshinovskii A. // Opt. Mater. 2009. V. 31. P. 1845. https://doi.org/10.1016/j.optmat.2008.11.026
  14. Pankratov V., Grigorjeva L., Millers D., Chudoba T. // Radiat. Meas. 2007. V. 42. № 4–5. P. 679. https://doi.org/10.1016/j.radmeas.2007.02.046
  15. Waetzig K., Kunzer M., Kinski I. // J. Mater. Res. 2014. V. 29. № 19. P. 2318. https://doi.org/10.1557/jmr.2014.229
  16. Кварталов В.Б., Федоров В.А., Буташин А.В., Каневский В.М. // Успехи в химии и химической технологии. 2022. Т. 36. № 7. С. 70.
  17. Rodnyi P.A., Mikhrin S.B., Mishin A.N., Sidorenko A.V. // IEEE Trans. Nucl. Sci. 2001. V. 48. № 6. P. 2340. https://doi.org/10.1109/23.983264
  18. Zorenko Y., Zorenko T., Gorbenko V.V. et al. // Opt. Mater. 2012. V. 34. № 8. P. 1314. https://doi.org/10.1016/j.optmat.2012.02.007
  19. Zorenko Yu., Voloshinovskii A., Savchyn V. et al. // Phys. Status Solidi. B. 2007. V. 244. P. 2180. https://doi.org/10.1002/pssb.200642431
  20. Bachmann V., Ronda C., Meijerink A. // Chem. Mater. 2009. V. 21. P. 2077. https://doi.org/10.1021/cm8030768
  21. Zorenko Y., Gorbenko V., Mihokova E. et al. // Radiat. Meas. 2007. V. 42. P. 521. https://doi.org/10.1016/j.radmeas.2007.01.045
  22. Khanin V., Venevtsev I., Spoor S. et al. // Opt. Mater. 2017. V. 72. P. 161. https://doi.org/10.1016/j.optmat.2017.05.040
  23. Zorenko Y., Voloshinovskii A., Savchyn V. et al. // Phys. Status Solidi. B. 2007. V. 244. № 6. P. 2180. https://doi.org/10.1002/pssb.200642431
  24. Буташин А.В., Веневцев И.Д., Федоров В.А. и др. // Кристаллография. 2023. T. 68. № 4. С. 594. https://doi.org/10.31857/S0023476123600234

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Спектры поглощения образцов кристаллов ИАГ:Се толщиной d: 6 – d = 690, 7 – d = 443, 9 – d = 37, 12 – d = 65 мкм. Номера кривых соответствуют номерам образцов из табл. 1

Скачать (118KB)
3. Рис. 2. Спектры РЛ кристаллов ИАГ:Се. Номера кривых соответствуют номерам образцов из табл. 1

Скачать (200KB)
4. Рис. 3. Зависимость интенсивности РЛ кристаллов ИАГ:Се на длине волны λ = 560 нм кристаллов от концентрации активатора: 1 – кристаллы, выращенные методом ГНК, 2 – кристаллы, полученные при спонтанной кристаллизации

Скачать (64KB)
5. Рис. 4. Зависимости интенсивности РЛ на длине волны λ = 560 нм образцов ИАГ:Cе от времени. Номера кривых соответствуют номерам образцов из табл. 1

Скачать (289KB)
6. Рис. 5. Зависимость интегрального вклада различных компонент кинетики РЛ образцов ИАГ:Се от концентрации церия: 1 – компонента 68 нс, 2 – компонента 1090 нс, 3 – промежуточная компонента (190 нс)

Скачать (107KB)
7. Рис. 6. Зависимость световыхода сцинтилляций кристаллов ИАГ:Се от концентрации активатора: 1 – световыход ионов Се3+, 2 – световыход основы; а – кристаллы, выращенные методом ГНК, б – кристаллы, полученные при спонтанной кристаллизации

Скачать (120KB)

© Российская академия наук, 2024