Influence of activator concentration on spectral-luminescence and scintillation properties of YAG:Ce crystals
- Authors: Fedorov V.A.1, Antonov E.V.1, Venevtsev I.D.2, Kanevsky V.M.1, Nabatov B.V.1, Saltanova E.S.1,3
-
Affiliations:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Peter the Great St. Petersburg Polytechnic University
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 69, No 2 (2024)
- Pages: 345-352
- Section: CRYSTAL GROWTH
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673215
- DOI: https://doi.org/10.31857/S0023476124020187
- EDN: https://elibrary.ru/YSCMVD
- ID: 673215
Cite item
Abstract
The luminescence and scintillation properties of YAG:Ce crystals grown from the melts in vacuum has been analysed. We have investigated absorption spectra, X-ray excited luminescence (XRL), XRL decay kinetics and scintillation light yield in a wide range of activator concentrations (from 0.0036 at.% to 1.175 at.% substitution of Y in the c-positions of garnet structure). The effective quenching of the intrinsic luminescence of antisite and vacancy defects of the crystal in the UV region with increasing activator concentration has been determined. The optimal concentration of the activator has been determined in order to increase the XRL intensity and the light output of scintillations of Сe3+ ions, taking into account the technological peculiarities of growing optically perfect single crystals with high concentration of Сe3+ ions by using the method of horizontal directional crystallisation in vacuum. The relations between the XRL kinetics and the activator concentration have been investigated. It has showed the possibility to obtain crystals with photon yield up to 25,000 ph/MeV.
Full Text

About the authors
V. A. Fedorov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Author for correspondence.
Email: fedorov-metrology@yandex.ru
Russian Federation, Moscow
E. V. Antonov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: fedorov-metrology@yandex.ru
Russian Federation, Moscow
I. D. Venevtsev
Peter the Great St. Petersburg Polytechnic University
Email: fedorov-metrology@yandex.ru
Russian Federation, St. Petersburg
V. M. Kanevsky
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: fedorov-metrology@yandex.ru
Russian Federation, Moscow
B. V. Nabatov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: fedorov-metrology@yandex.ru
Russian Federation, Moscow
E. S. Saltanova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University)
Email: fedorov-metrology@yandex.ru
Russian Federation, Москва; Dolgoprudny
References
- Kaminskii A.A. Laser Crystals. Springer-Verlag, 1990. 456 p. https://doi.org/10.1007/978-3-540-70749-3_6
- Lecoq P., Gektin A., Korzhik M. Inorganic scintillators for detector systems. Switzerland: Springer, 2017. 408 p. https://doi.org/10.1007/978-3-319-45522-8_1
- Петросян А.Г. Физика и спектроскопия лазерных кристаллов / Под ред. Каминского А.А. М.: Наука, 1986. 235 с.
- Багдасаров Х.С. Высокотемпературная кристаллизация из расплава. М.: Физматлит, 2004. 160 с.
- Zhaoa G., Zenga X., Xua J. et al. // J. Cryst. Growth. 2003. V. 253. P. 290. https://doi.org/10.1016/S0022-0248(03)01017-0
- Зоренко Ю.В., Савчин В.П., Горбенко В.И. и др. // ФТТ. 2011. Т. 53. Вып. 8. С. 1542.
- Нижанковский С.В., Данько А.Я., Зеленская О.В. и др. // Письма в ЖТФ. 2009. Т. 35. Вып. 20. С. 77.
- Ashurov M.Kh., Voronko Yu.K., Osiko V.V., Sobol A.A. // Phys. Status Solidi. A. 1977. V. 42. P. 101.
- Zorenko Y., Zorenko T., Gorbenko V.V. et al. // Opt. Mater. 2012. V. 34. № 8. P. 1314. https://doi.org/10.1016/j.optmat.2012.02.007
- Zorenko Y. // Phys. Status Solidi. C. 2005. V. 2. № 1. P. 375. https://doi.org/10.1002/pssc.200460275
- Shiran N., Gektin A., Gridin S. et al. // IEEE Trans. Nucl. Sci. 2018. V. 65. № 3. P. 871. https://doi.org/10.1109/TNS.2018.2797545
- Khanin V.M., Vrubel I.I., Polozkov R.G. et al. // J. Phys. Chem. C. 2019. V. 123. № 37. P. 22725. https://doi.org/10.1021/acs.jpcc.9b05169
- Zorenko Yu., Zych E., Voloshinovskii A. // Opt. Mater. 2009. V. 31. P. 1845. https://doi.org/10.1016/j.optmat.2008.11.026
- Pankratov V., Grigorjeva L., Millers D., Chudoba T. // Radiat. Meas. 2007. V. 42. № 4–5. P. 679. https://doi.org/10.1016/j.radmeas.2007.02.046
- Waetzig K., Kunzer M., Kinski I. // J. Mater. Res. 2014. V. 29. № 19. P. 2318. https://doi.org/10.1557/jmr.2014.229
- Кварталов В.Б., Федоров В.А., Буташин А.В., Каневский В.М. // Успехи в химии и химической технологии. 2022. Т. 36. № 7. С. 70.
- Rodnyi P.A., Mikhrin S.B., Mishin A.N., Sidorenko A.V. // IEEE Trans. Nucl. Sci. 2001. V. 48. № 6. P. 2340. https://doi.org/10.1109/23.983264
- Zorenko Y., Zorenko T., Gorbenko V.V. et al. // Opt. Mater. 2012. V. 34. № 8. P. 1314. https://doi.org/10.1016/j.optmat.2012.02.007
- Zorenko Yu., Voloshinovskii A., Savchyn V. et al. // Phys. Status Solidi. B. 2007. V. 244. P. 2180. https://doi.org/10.1002/pssb.200642431
- Bachmann V., Ronda C., Meijerink A. // Chem. Mater. 2009. V. 21. P. 2077. https://doi.org/10.1021/cm8030768
- Zorenko Y., Gorbenko V., Mihokova E. et al. // Radiat. Meas. 2007. V. 42. P. 521. https://doi.org/10.1016/j.radmeas.2007.01.045
- Khanin V., Venevtsev I., Spoor S. et al. // Opt. Mater. 2017. V. 72. P. 161. https://doi.org/10.1016/j.optmat.2017.05.040
- Zorenko Y., Voloshinovskii A., Savchyn V. et al. // Phys. Status Solidi. B. 2007. V. 244. № 6. P. 2180. https://doi.org/10.1002/pssb.200642431
- Буташин А.В., Веневцев И.Д., Федоров В.А. и др. // Кристаллография. 2023. T. 68. № 4. С. 594. https://doi.org/10.31857/S0023476123600234
Supplementary files
