Insights into high-dose helium implantation of silicon

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper reports an analysis of surface morphology variation and cavity band formation in silicon single crystal induced by ion implantation and post-implantation annealing in different regimes. Critical implantation doses required to promote surface erosion are determined for samples subjected to post-implantation annealing and in absence of post-implantation treatment. For instance, implantation with helium ions to fluences below 3 × 1017 He+/cm2 without post-implantation annealing does not affect the surface morphology; while annealing of samples implanted with fluences of 2 × 1017 He+/cm2 and higher promotes flaking.

全文:

受限制的访问

作者简介

P. Aleksandrov

National Research Center “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
俄罗斯联邦, Moscow

O. Emelyanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of National Research Center “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
俄罗斯联邦, Moscow

S. Shemardov

National Research Center “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
俄罗斯联邦, Moscow

D. Khmelenin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of National Research Center “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
俄罗斯联邦, Moscow

A. Vasiliev

National Research Center “Kurchatov Institute”; Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of National Research Center “Kurchatov Institute”

编辑信件的主要联系方式.
Email: a.vasiliev56@gmail.com
俄罗斯联邦, Moscow; Moscow

参考

  1. Follstaedt D.M., Myers S.M., Petersen G.A., Medernach J.W. // J. Electron Mater. 1996. V. 25. № 1. P. 157. https://doi.org/10.1007/BF02666190
  2. Raineri V., Fallica P.G., Percolla G. et al. // J. Appl. Phys. 1995. V. 78. № 6. P. 3727. https://doi.org/10.1063/1.359953
  3. Raineri V., Saggio M., Rimini E. // J. Mater. Res. 2000. V. 15. № 7. P. 1449. https://doi.org/10.1557/JMR.2000.0211
  4. Griffioen C.C., Evans J.H., De Jong P.C., Van Veen A. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 27. № 3. P. 417. https://doi.org/10.1016/0168-583X(87)90522-2
  5. Evans J.H., Van Veen A., Griffioen C.C. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 28. № 3. P. 360. https://doi.org/10.1016/0168-583X(87)90176-5
  6. Corni F., Nobili C., Ottaviani G. et al. // Phys. Rev. B. 1997. V. 56. № 12. P. 7331. https://doi.org/10.1103/PhysRevB.56.7331
  7. Fichtner P.F.P., Kaschny J.R., Yankov R.A. et al. // Appl. Phys. Lett. 1997. V. 70. № 6. P. 732. https://doi.org/10.1063/1.118251
  8. Fichtner P.F.P., Kaschny J.R., Behar M. et al. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 148. № 1. P. 329. https://doi.org/10.1016/S0168-583X(98)00714-9
  9. Corni F., Calzolari G., Frabboni S. et al. // J. Appl. Phys. 1999. V. 85. № 3. P. 1401. https://doi.org/10.1063/1.369335
  10. Cerofolini G.F., Calzolari G., Corni F. et al. // Phys. Rev. B. 2000. V. 61. № 15. P. 10183. https://doi.org/10.1103/PhysRevB.61.10183
  11. Da Silva D.L., Fichtner P.F.P., Peeva A. et al. // Nucl. Instrum. Methods Phys. Res. B. 2001. V. 175–177. P. 335. https://doi.org/10.1016/S0168-583X(00)00567-X
  12. Evans J.H. // Nucl. Instrum. Methods Phys. Res. B. 2002. V. 196. № 1. P. 125. https://doi.org/10.1016/S0168-583X(02)01290-9
  13. David M.L., Beaufort M.F., Barbot J.F. // J. Appl. Phys. 2003. V. 93. № 3. P. 1438. https://doi.org/10.1063/1.1531814
  14. Pizzagalli L., David M.L., Bertolus M. // Model. Simul. Mat. Sci. Eng. 2013. V. 21. № 6. P. 065002. https://doi.org/10.1088/0965-0393/21/6/065002
  15. Liu L., Xu X., Li R. et al. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 456. P. 53. https://doi.org/10.1016/j.nimb.2019.06.034
  16. Ono K., Miyamoto M., Kurata H. et al. // J. Appl. Phys. 2019. V. 126. № 13. P. 135104. https://doi.org/10.1063/1.5118684
  17. Pizzagalli L., Dérès J., David M.-L., Jourdan T. // J. Phys. D. Appl. Phys. 2019. V. 52. № 45. P. 455106. https://doi.org/10.1088/1361-6463/ab3816
  18. Ogura A. // Appl. Phys. Lett. 2003. V. 82. № 25. P. 4480. https://doi.org/10.1063/1.1586783
  19. Van Veen A., Schut H., Hakvoort R.A. et al. // MRS Online Proceedings Library. 1994. V. 373. № 1. P. 499. https://doi.org/10.1557/PROC-373-499
  20. Myers S.M., Bishop D.M., Follstaedt D.M. et al. // MRS Online Proceedings Library. 1992. V. 283. № 1. P. 549. https://doi.org/10.1557/PROC-283-549
  21. Was G.S. Fundamentals of Radiation Materials Science. New York: Springer, 2017. https://doi.org/10.1007/978-1-4939-3438-6
  22. Kótai E., Pászti F., Manuaba A. et al. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 19–20. P. 312. https://doi.org/10.1016/S0168-583X(87)80063-0
  23. Qian C., Terreault B. // J. Appl. Phys. 2001. V. 90. № 10. P. 5152. https://doi.org/10.1063/1.1413234
  24. Li B., Zhang C., Zhou L. et al. // Nucl. Instrum. Methods Phys. Res. B. 2008. V. 266. № 24. P. 5112. https://doi.org/10.1016/j.nimb.2008.09.016
  25. Alix K., David M.-L., Dérès J. et al. // Phys. Rev. B. 2018. V. 97. № 10. P. 104102. https://doi.org/10.1103/PhysRevB.97.104102
  26. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. № 11. P. 1818. https://doi.org/10.1016/j.nimb.2010.02.091
  27. Griffin P.J. // 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS). 2016. P. 1. https://doi.org/10.1109/RADECS.2016.8093101
  28. Arganda-Carreras I., Kaynig V., Ruedenet C. et al. // Bioinformatics. 2017. V. 33. № 15. P. 2424. https://doi.org/10.1093/bioinformatics/btx180
  29. Jenc̆ic̆ I., Bench M.W., Robertson I.M., Kirk M.A. // J. Appl. Phys. 1995. V. 78. № 2. P. 974. https://doi.org/10.1063/1.360764
  30. Han W.T., Liu H.P., Li B. // Appl. Surf. Sci. 2018. V. 455. P. 433. https://doi.org/10.1016/j.apsusc.2018.05.228
  31. Yang Z., Zou Z., Zhang Z. et al. // Materials. 2021. V. 14. № 17. P. 5107. https://doi.org/10.3390/ma14175107

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Profiles of the distribution of implanted He and damaging dose over the depth of a Si sample implanted with a fluence of 1 × 1017 cm–2.

下载 (103KB)
3. Fig. 2. SEM image of single-crystal Si wafers after implantation and annealing in different modes: a, b – implantation with fluence of 3 × 1017 cm–2 without annealing, c, d – implantation with fluence of 2 × 1017 cm–2 after annealing at 700°C, d, f – implantation with fluence of 2 × 1017 cm–2 after annealing at 1000°C, g, h – implantation with fluence of 1 × 1017 cm–2 after annealing at 1000°C; a, c, d, g – general view of the sample surface, b, d, f, h – zones subject to blistering/flaking; 1 – surface areas without signs of destruction, 2 – surface areas subject to blistering/flaking (examples are indicated by rectangles in panels a, c, d, g).

下载 (1MB)
4. Fig. 3. Bright-field TEM/HTDT STEM images of single-crystal Si wafers after implantation and annealing in different modes: a, b – implantation with a fluence of 3 × 1017 cm–2 without annealing, c, d – implantation with a fluence of 2 × 1017 cm–2 after annealing at 1000°C, d, f – implantation with a fluence of 1 × 1017 cm–2 after annealing at 1000°C; a, c, d – bright-field TEM images, b, d, f – HTDT STEM image.

下载 (719KB)
5. Fig. 4. Distribution histograms for samples after annealing at 1000°C, implanted with fluences of 1 × 1017 cm–2 and 2 × 1017 cm–2: a – pore/bubble diameter in the entire implanted layer, b – average pore/bubble diameter depending on their depth

下载 (98KB)
6. Fig. 5. High-resolution TEM images of single-crystal Si wafers after implantation with a fluence of 2 × 1017 cm–2 and annealing at 1000°C: a, b – pores/bubbles ≤15–20 nm in size, c – pores/bubbles near the projective range of ions with pronounced faceting, d – pores/bubbles constituting chains.

下载 (353KB)
7. Fig. 6. STEM image of the samples obtained using VKTD (a), ERM distribution of elements along line 1 (b) and ERM element distribution maps: Si (c) and O (d).

下载 (486KB)
8. Fig. 7. High-resolution TEM images of samples after implantation with a fluence of 2 × 1017 cm–2 and annealing at 1000°C: a – before exposure to the electron beam, b – after exposure to an electron beam with an energy of 200 keV in scanning mode for 10 min.

下载 (184KB)
9. Fig. 8. High-resolution TEM images of samples after implantation with a fluence of 2 × 1017 cm–2 and annealing at 1000°C: a – rod defects in the {113} planes, b – stacking faults in the {111} planes.

下载 (354KB)

版权所有 © Russian Academy of Sciences, 2024