Insights into high-dose helium implantation of silicon

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper reports an analysis of surface morphology variation and cavity band formation in silicon single crystal induced by ion implantation and post-implantation annealing in different regimes. Critical implantation doses required to promote surface erosion are determined for samples subjected to post-implantation annealing and in absence of post-implantation treatment. For instance, implantation with helium ions to fluences below 3 × 1017 He+/cm2 without post-implantation annealing does not affect the surface morphology; while annealing of samples implanted with fluences of 2 × 1017 He+/cm2 and higher promotes flaking.

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Aleksandrov

National Research Center “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Ресей, Moscow

O. Emelyanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of National Research Center “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Ресей, Moscow

S. Shemardov

National Research Center “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Ресей, Moscow

D. Khmelenin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of National Research Center “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Ресей, Moscow

A. Vasiliev

National Research Center “Kurchatov Institute”; Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of National Research Center “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: a.vasiliev56@gmail.com
Ресей, Moscow; Moscow

Әдебиет тізімі

  1. Follstaedt D.M., Myers S.M., Petersen G.A., Medernach J.W. // J. Electron Mater. 1996. V. 25. № 1. P. 157. https://doi.org/10.1007/BF02666190
  2. Raineri V., Fallica P.G., Percolla G. et al. // J. Appl. Phys. 1995. V. 78. № 6. P. 3727. https://doi.org/10.1063/1.359953
  3. Raineri V., Saggio M., Rimini E. // J. Mater. Res. 2000. V. 15. № 7. P. 1449. https://doi.org/10.1557/JMR.2000.0211
  4. Griffioen C.C., Evans J.H., De Jong P.C., Van Veen A. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 27. № 3. P. 417. https://doi.org/10.1016/0168-583X(87)90522-2
  5. Evans J.H., Van Veen A., Griffioen C.C. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 28. № 3. P. 360. https://doi.org/10.1016/0168-583X(87)90176-5
  6. Corni F., Nobili C., Ottaviani G. et al. // Phys. Rev. B. 1997. V. 56. № 12. P. 7331. https://doi.org/10.1103/PhysRevB.56.7331
  7. Fichtner P.F.P., Kaschny J.R., Yankov R.A. et al. // Appl. Phys. Lett. 1997. V. 70. № 6. P. 732. https://doi.org/10.1063/1.118251
  8. Fichtner P.F.P., Kaschny J.R., Behar M. et al. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 148. № 1. P. 329. https://doi.org/10.1016/S0168-583X(98)00714-9
  9. Corni F., Calzolari G., Frabboni S. et al. // J. Appl. Phys. 1999. V. 85. № 3. P. 1401. https://doi.org/10.1063/1.369335
  10. Cerofolini G.F., Calzolari G., Corni F. et al. // Phys. Rev. B. 2000. V. 61. № 15. P. 10183. https://doi.org/10.1103/PhysRevB.61.10183
  11. Da Silva D.L., Fichtner P.F.P., Peeva A. et al. // Nucl. Instrum. Methods Phys. Res. B. 2001. V. 175–177. P. 335. https://doi.org/10.1016/S0168-583X(00)00567-X
  12. Evans J.H. // Nucl. Instrum. Methods Phys. Res. B. 2002. V. 196. № 1. P. 125. https://doi.org/10.1016/S0168-583X(02)01290-9
  13. David M.L., Beaufort M.F., Barbot J.F. // J. Appl. Phys. 2003. V. 93. № 3. P. 1438. https://doi.org/10.1063/1.1531814
  14. Pizzagalli L., David M.L., Bertolus M. // Model. Simul. Mat. Sci. Eng. 2013. V. 21. № 6. P. 065002. https://doi.org/10.1088/0965-0393/21/6/065002
  15. Liu L., Xu X., Li R. et al. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 456. P. 53. https://doi.org/10.1016/j.nimb.2019.06.034
  16. Ono K., Miyamoto M., Kurata H. et al. // J. Appl. Phys. 2019. V. 126. № 13. P. 135104. https://doi.org/10.1063/1.5118684
  17. Pizzagalli L., Dérès J., David M.-L., Jourdan T. // J. Phys. D. Appl. Phys. 2019. V. 52. № 45. P. 455106. https://doi.org/10.1088/1361-6463/ab3816
  18. Ogura A. // Appl. Phys. Lett. 2003. V. 82. № 25. P. 4480. https://doi.org/10.1063/1.1586783
  19. Van Veen A., Schut H., Hakvoort R.A. et al. // MRS Online Proceedings Library. 1994. V. 373. № 1. P. 499. https://doi.org/10.1557/PROC-373-499
  20. Myers S.M., Bishop D.M., Follstaedt D.M. et al. // MRS Online Proceedings Library. 1992. V. 283. № 1. P. 549. https://doi.org/10.1557/PROC-283-549
  21. Was G.S. Fundamentals of Radiation Materials Science. New York: Springer, 2017. https://doi.org/10.1007/978-1-4939-3438-6
  22. Kótai E., Pászti F., Manuaba A. et al. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 19–20. P. 312. https://doi.org/10.1016/S0168-583X(87)80063-0
  23. Qian C., Terreault B. // J. Appl. Phys. 2001. V. 90. № 10. P. 5152. https://doi.org/10.1063/1.1413234
  24. Li B., Zhang C., Zhou L. et al. // Nucl. Instrum. Methods Phys. Res. B. 2008. V. 266. № 24. P. 5112. https://doi.org/10.1016/j.nimb.2008.09.016
  25. Alix K., David M.-L., Dérès J. et al. // Phys. Rev. B. 2018. V. 97. № 10. P. 104102. https://doi.org/10.1103/PhysRevB.97.104102
  26. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. № 11. P. 1818. https://doi.org/10.1016/j.nimb.2010.02.091
  27. Griffin P.J. // 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS). 2016. P. 1. https://doi.org/10.1109/RADECS.2016.8093101
  28. Arganda-Carreras I., Kaynig V., Ruedenet C. et al. // Bioinformatics. 2017. V. 33. № 15. P. 2424. https://doi.org/10.1093/bioinformatics/btx180
  29. Jenc̆ic̆ I., Bench M.W., Robertson I.M., Kirk M.A. // J. Appl. Phys. 1995. V. 78. № 2. P. 974. https://doi.org/10.1063/1.360764
  30. Han W.T., Liu H.P., Li B. // Appl. Surf. Sci. 2018. V. 455. P. 433. https://doi.org/10.1016/j.apsusc.2018.05.228
  31. Yang Z., Zou Z., Zhang Z. et al. // Materials. 2021. V. 14. № 17. P. 5107. https://doi.org/10.3390/ma14175107

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Profiles of the distribution of implanted He and damaging dose over the depth of a Si sample implanted with a fluence of 1 × 1017 cm–2.

Жүктеу (103KB)
3. Fig. 2. SEM image of single-crystal Si wafers after implantation and annealing in different modes: a, b – implantation with fluence of 3 × 1017 cm–2 without annealing, c, d – implantation with fluence of 2 × 1017 cm–2 after annealing at 700°C, d, f – implantation with fluence of 2 × 1017 cm–2 after annealing at 1000°C, g, h – implantation with fluence of 1 × 1017 cm–2 after annealing at 1000°C; a, c, d, g – general view of the sample surface, b, d, f, h – zones subject to blistering/flaking; 1 – surface areas without signs of destruction, 2 – surface areas subject to blistering/flaking (examples are indicated by rectangles in panels a, c, d, g).

Жүктеу (1MB)
4. Fig. 3. Bright-field TEM/HTDT STEM images of single-crystal Si wafers after implantation and annealing in different modes: a, b – implantation with a fluence of 3 × 1017 cm–2 without annealing, c, d – implantation with a fluence of 2 × 1017 cm–2 after annealing at 1000°C, d, f – implantation with a fluence of 1 × 1017 cm–2 after annealing at 1000°C; a, c, d – bright-field TEM images, b, d, f – HTDT STEM image.

Жүктеу (719KB)
5. Fig. 4. Distribution histograms for samples after annealing at 1000°C, implanted with fluences of 1 × 1017 cm–2 and 2 × 1017 cm–2: a – pore/bubble diameter in the entire implanted layer, b – average pore/bubble diameter depending on their depth

Жүктеу (98KB)
6. Fig. 5. High-resolution TEM images of single-crystal Si wafers after implantation with a fluence of 2 × 1017 cm–2 and annealing at 1000°C: a, b – pores/bubbles ≤15–20 nm in size, c – pores/bubbles near the projective range of ions with pronounced faceting, d – pores/bubbles constituting chains.

Жүктеу (353KB)
7. Fig. 6. STEM image of the samples obtained using VKTD (a), ERM distribution of elements along line 1 (b) and ERM element distribution maps: Si (c) and O (d).

Жүктеу (486KB)
8. Fig. 7. High-resolution TEM images of samples after implantation with a fluence of 2 × 1017 cm–2 and annealing at 1000°C: a – before exposure to the electron beam, b – after exposure to an electron beam with an energy of 200 keV in scanning mode for 10 min.

Жүктеу (184KB)
9. Fig. 8. High-resolution TEM images of samples after implantation with a fluence of 2 × 1017 cm–2 and annealing at 1000°C: a – rod defects in the {113} planes, b – stacking faults in the {111} planes.

Жүктеу (354KB)

© Russian Academy of Sciences, 2024