O svoystvakh metoda ortogonal'noy proektsii v zadache o konsensuse

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article is devoted to an asymptotic behavior of a multi-agent system with information links. We proved that the orthogonal projection method proposed for the regularization of the consensus protocol is characterized by a pseudoinverse matrix for the introduced auxiliary matrix for an arbitrary communication digraph of a multi-agent system. We cosidered the eigenprojection of the Laplacian matrix corresponding to the communication digraph, in which the influences on the fixed agent change proportionally. We obtained a number of results that are of independent importance and can be used in models of multi-agent systems with different protocols.

作者简介

R. Agaev

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: agaraf3@gmail.com
Moscow, Russia

D. Khomutov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: homutov_dk@mail.ru
Moscow, Russia

参考

  1. Olfati-Saber R., Fax J.A., Murray R.M. Consensus and cooperation in networked multi-agent systems // Proceedings of the IEEE. 2007. V. 95. No. 1. P. 215-233.
  2. Jadbabaie A., Lin J., Morse A.S. Coordination of groups of mobile autonomous agents using nearest neighbor rules // IEEE Transactions on automatic control. 2003. V. 48. No. 6. P. 988-1001.
  3. Olfati-Saber R.M., Murray R.M. Consensus Problems in Networks of Agents with Switching Topology and Time-Delays // IEEE Trans. Automat. Control. 2004. V. 49. No. 9. P. 1520-1533.
  4. Ren W., Beard R.W., Atkins E.M. Information consensus in multivehicle cooperative control // IEEE Control systems magazine. 2007. V. 27. No. 2. P. 71-82.
  5. Mesbahi M., Egerstedt M. Graph theoretic methods in multiagent networks / Graph Theoretic Methods in Multiagent Networks. Princeton University Press, 2010.
  6. Chebotarev P., Agaev R. The Forest Consensus Theorem // IEEE Trans. Automat. Control. 2014. V. 59. No. 9. P. 2475-2479.
  7. Агаев Р.П., Чеботарев П.Ю. Модели латентного консенсуса // АиТ. 2017. № 1. C. 106-120.
  8. Agaev R.P. On the role of the eigenprojector of the Laplacian matrix for reaching consensus in multiagent second-order systems // Autom. Remote Control. 2019. Т. 80. No. 11. P. 2033-2042.
  9. Гантмахер Ф. Теория матриц. М.: Наука, 1967.
  10. Агаев Р.П., Чеботарев П.Ю. Метод проекции в задаче о консенсусе и регуляризованный предел степеней стохастической матрицы // АиТ. 2011. № 12. C. 38-59.
  11. Agaev R., Khomutov D. Graph Interpretation of the Method of Orthogonal Projection for Regularization in Multiagent Systems // 14th International Conference "Management of Large-scale System Development" (MLSD). IEEE. 2021. P. 1-4.
  12. Rothblum G. Computation of the eigenprojection of a nonnegative matrix at its spectral radius / Stochastic Systems: Modeling, Identi cation and Optimization, II. Springer, Berlin, Heidelberg. 1976. P. 188-201.
  13. Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989.
  14. Ben-Israel A., Greville T.N.E. Generalized Inverses: theory and applications (Second Edition). Springer, 2003.
  15. Fiedler M., Sedl'aˇcek J.O. W-basich orientovanych grafu // ˇCasopis pro pˇestov'an'i matematiky. 1958. V. 83. No. 2. P. 214-225.

补充文件

附件文件
动作
1. JATS XML

版权所有 © The Russian Academy of Sciences, 2023