O svoystvakh metoda ortogonal'noy proektsii v zadache o konsensuse

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article is devoted to an asymptotic behavior of a multi-agent system with information links. We proved that the orthogonal projection method proposed for the regularization of the consensus protocol is characterized by a pseudoinverse matrix for the introduced auxiliary matrix for an arbitrary communication digraph of a multi-agent system. We cosidered the eigenprojection of the Laplacian matrix corresponding to the communication digraph, in which the influences on the fixed agent change proportionally. We obtained a number of results that are of independent importance and can be used in models of multi-agent systems with different protocols.

About the authors

R. P Agaev

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: agaraf3@gmail.com
Moscow, Russia

D. K Khomutov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Author for correspondence.
Email: homutov_dk@mail.ru
Moscow, Russia

References

  1. Olfati-Saber R., Fax J.A., Murray R.M. Consensus and cooperation in networked multi-agent systems // Proceedings of the IEEE. 2007. V. 95. No. 1. P. 215-233.
  2. Jadbabaie A., Lin J., Morse A.S. Coordination of groups of mobile autonomous agents using nearest neighbor rules // IEEE Transactions on automatic control. 2003. V. 48. No. 6. P. 988-1001.
  3. Olfati-Saber R.M., Murray R.M. Consensus Problems in Networks of Agents with Switching Topology and Time-Delays // IEEE Trans. Automat. Control. 2004. V. 49. No. 9. P. 1520-1533.
  4. Ren W., Beard R.W., Atkins E.M. Information consensus in multivehicle cooperative control // IEEE Control systems magazine. 2007. V. 27. No. 2. P. 71-82.
  5. Mesbahi M., Egerstedt M. Graph theoretic methods in multiagent networks / Graph Theoretic Methods in Multiagent Networks. Princeton University Press, 2010.
  6. Chebotarev P., Agaev R. The Forest Consensus Theorem // IEEE Trans. Automat. Control. 2014. V. 59. No. 9. P. 2475-2479.
  7. Агаев Р.П., Чеботарев П.Ю. Модели латентного консенсуса // АиТ. 2017. № 1. C. 106-120.
  8. Agaev R.P. On the role of the eigenprojector of the Laplacian matrix for reaching consensus in multiagent second-order systems // Autom. Remote Control. 2019. Т. 80. No. 11. P. 2033-2042.
  9. Гантмахер Ф. Теория матриц. М.: Наука, 1967.
  10. Агаев Р.П., Чеботарев П.Ю. Метод проекции в задаче о консенсусе и регуляризованный предел степеней стохастической матрицы // АиТ. 2011. № 12. C. 38-59.
  11. Agaev R., Khomutov D. Graph Interpretation of the Method of Orthogonal Projection for Regularization in Multiagent Systems // 14th International Conference "Management of Large-scale System Development" (MLSD). IEEE. 2021. P. 1-4.
  12. Rothblum G. Computation of the eigenprojection of a nonnegative matrix at its spectral radius / Stochastic Systems: Modeling, Identi cation and Optimization, II. Springer, Berlin, Heidelberg. 1976. P. 188-201.
  13. Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989.
  14. Ben-Israel A., Greville T.N.E. Generalized Inverses: theory and applications (Second Edition). Springer, 2003.
  15. Fiedler M., Sedl'aˇcek J.O. W-basich orientovanych grafu // ˇCasopis pro pˇestov'an'i matematiky. 1958. V. 83. No. 2. P. 214-225.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 The Russian Academy of Sciences