SYNTHESIS OF A POLYFUNCTIONAL DENDRON BASED ON GALLIC ACID USING THE AZIDE-ALKYNE CYCLOADDITION REACTION
- 作者: Fatykhova А.M.1, Burilov V.A.1, Solovieva S.E.2, Antipin I.S.1
-
隶属关系:
- Kazan Federal University
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences
- 期: 卷 513, 编号 1 (2023)
- 页面: 11-17
- 栏目: CHEMISTRY
- URL: https://ter-arkhiv.ru/2686-9535/article/view/651925
- DOI: https://doi.org/10.31857/S2686953522600830
- EDN: https://elibrary.ru/QSDKPP
- ID: 651925
如何引用文章
详细
By stepwise modification of gallic acid using an azide-alkyne cycloaddition reaction, a first-generation triazole-containing dendron with hydroxypropyltriazole groups and a tetraethylene glycol linker was obtained for the first time. The structure of all intermediate compounds has been proven by modern physical methods. It has been established that the use of bromomethylene derivatives of gallic acid in the synthesis of triazole-containing dendrons results in the formation of by-products of alkylation of the bases used in the reaction (triethylamine and diisopropylethylamine) due to the high mobility of the bromine atom in the benzyl position.
作者简介
А. Fatykhova
Kazan Federal University
Email: ultrav@bk.ru
Russian Federation, 420008, Kazan
V. Burilov
Kazan Federal University
编辑信件的主要联系方式.
Email: ultrav@bk.ru
Russian Federation, 420008, Kazan
S. Solovieva
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences
Email: ultrav@bk.ru
Russian Federation, 420088, Kazan
I. Antipin
Kazan Federal University
Email: ultrav@bk.ru
Russian Federation, 420008, Kazan
参考
- Antipin I.S., Alfimov M.V., Arslanov V.V., Burilov V.A., Vatsadze S.Z., Voloshin Y.Z., Volcho K.P., Gorbatchuk V.V., Gorbunova Y.G., Gromov S.P., Dudkin S.V., Zaitsev S.Y., Zakharova L.Y., Ziganshin M.A., Zolotukhina A.V., Kalinina M.A., Karakhanov E.A., Kashapov R.R., Koifman O.I., Konovalov A.I., Korenev V.S., Maksimov A.L., Mamardashvili N.Z., Mamardashvili G.M., Martynov A.G., Mustafina A.R., Nugmanov R.I., Ovsyannikov A.S., Padnya P.L., Potapov A.S., Selektor S.L., Sokolov M.N., Solovieva S.E., Stoikov I.I., Stuzhin P.A., Suslov E.V., Ushakov E.N., Fedin V.P., Fedorenko S.V., Fedorova O.A., Fedorov Y.V., Chvalun S.N., Tsivadze A.Y., Shtykov S.N., Shurpik D.N., Shcherbina M.A., Yakimova L.S. // Russ. Chem. Rev. 2021. V. 90. № 8. P. 895–1101. https://doi.org/10.1070/RCR5011
- Arzhakova O.V., Arzhakov M.S., Badamshina E.R., Bryuzgina E.B., Bryuzgin E.V., Bystrova A.V., Vaga-nov G.V., Vasilevskaya V.V., Vdovichenko A.Yu., Gallya-mov M.O., Gumerov R.A., Didenko A.L., Zefirov V.V., Karpov S.V., Komarov P.V., Kulichikhin V.G., Kuroch-kin S.A., Larin S.V., Malkin A.Ya., Milenin S.A., Muzafarov A.M., Molchanov V.S., Navrotskiy A.V., Novakov I.A., Panarin E.F., Panova I.G., Potemkin I.I., Svetlichny V.M., Sedush N.G., Serenko O.A., Uspenskii S.A., Philippova O.E., Khokhlov A.R., Chvalun S.N., Sheiko S.S., Shibaev A.V., Elmanovich I.V., Yudin V.E., Yakimansky A.V., Yaroslavov A.A. // Russ. Chem. Rev. 2022. V. 91. P. 12. https://doi.org/10.57634/RCR5062
- Yamamoto K., Imaoka T., Tanabe M., Kambe T. // Chem. Rev. 2019. V. 120. № 2. P. 1397–1437. https://doi.org/10.1021/acs.chemrev.9b00188
- Newkome G.R., Yao Z.Q., Baker G.R., Gupta V.K. // J. Org. Chem. 1985. V. 50. № 11. P. 2003–2004. https://doi.org/10.1021/jo00211a052
- Miller T.M., Neenan T.X. // Chem. Mater. 1990. V. 2. № 4. P. 346–349. https://doi.org/10.1021/cm00010a006
- Kolb H.C., Finn M.G., Sharpless K.B. // Angew. Chem., Int. Ed. 2001. V. 40. № 11. P. 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11< 2004::AID-ANIE2004>3.0.CO;2-5
- Meldal M., Tornøe C.W. // Chem. Rev. 2008. V. 108. № 8. P. 2952–3015. https://doi.org/10.1021/cr0783479
- Parshad B., Yadav P., Kerkhoff Y., Mittal A., Achazi K., Haag R., Sharma S.K. // New J. Chem. 2019. V. 43. № 30. P. 11984–11993. https://doi.org/10.1039/C9NJ02612F
- Wu P., Feldman A.K., Nugent A.K., Hawker C.J., Scheel A., Voit B., Pyun J., Fréchet J.M.J., Sharpless K.B., Fokin V.V. // Angew. Chem. 2004. V. 116. № 30. P. 4018–4022. https://doi.org/10.1002/ange.200454078
- Arseneault M., Levesque I., Morin J.F. // Macromolecules. 2012. V. 45. № 9. P. 3687–3694. https://doi.org/10.1021/ma300648r
- Agrahari A.K., Singh A.S., Mukherjee R., Tiwari V.K. // RSC Adv. 2020. V. 10. № 52. P. 31553–31562. https://doi.org/10.1039/D0RA05289B
- Qin T., Li X., Chen J., Zeng Y., Yu T., Yang G., Li Y. // Chem. Asian J. 2014. V. 9. № 12. P. 3641–3649. https://doi.org/10.1002/asia.201402960
- Mu S., Liu W., Ling Q., Liu X., Gu H. // Appl. Organomet. Chem. 2019. V. 33. № 6. P. e4908. https://doi.org/10.1002/aoc.4908
- Camponovo J., Ruiz J., Cloutet E., Astruc D. // Chem. Eur. J. 2009. V. 15. № 12. P. 2990–3002. https://doi.org/10.1002/chem.200801999
- Liu Y., Liu G.X., Zhang W., Du C., Wesdemiotis C., Cheng S.Z.D. // Macromolecules. 2019. V. 52. № 11. P. 4341–4348. https://doi.org/10.1021/acs.macromol.9b00549
- Palmans A.R.A., Vekemans J.A.J.M., Fischer H., Hik-met R.A., Meijer E.W. // Chem. Eur. J. 1997. V. 3. № 2. P. 300–307. https://doi.org/10.1002/chem.19970030220
- Armarego W.L.F. Purification of laboratory chemicals. 8th ed. Elsevier, Butterworth-Heinemann, 2017.
- Wijtmans M., de Graaf C., de Kloe G., Istyastono E.P., Smit J., Lim H., Boonnak R., Nijmeijer S., Smits R.A., Jongejan A., Zuiderveld O., de Esch I.J.P., Leurs R. // J. Med. Chem. 2011. V. 54. № 6. P. 1693–1703. https://doi.org/10.1021/jm1013488
- Chen H., Hou S., Tan Y. // Supramol. Chem. 2016. V. 28. № 9–10. P. 801–809. https://doi.org/10.1080/10610278.2016.1142089
- Heller P., Mohr N., Birke A., Weber B., Reske-Kunz A., Bros M., Barz M. // Macromol. Biosci. 2015. V. 15. № 1. P. 63–73. https://doi.org/10.1002/mabi.201400417
补充文件
