SYNTHESIS OF A POLYFUNCTIONAL DENDRON BASED ON GALLIC ACID USING THE AZIDE-ALKYNE CYCLOADDITION REACTION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

By stepwise modification of gallic acid using an azide-alkyne cycloaddition reaction, a first-generation triazole-containing dendron with hydroxypropyltriazole groups and a tetraethylene glycol linker was obtained for the first time. The structure of all intermediate compounds has been proven by modern physical methods. It has been established that the use of bromomethylene derivatives of gallic acid in the synthesis of triazole-containing dendrons results in the formation of by-products of alkylation of the bases used in the reaction (triethylamine and diisopropylethylamine) due to the high mobility of the bromine atom in the benzyl position.

Sobre autores

А. Fatykhova

Kazan Federal University

Email: ultrav@bk.ru
Russian Federation, 420008, Kazan

V. Burilov

Kazan Federal University

Autor responsável pela correspondência
Email: ultrav@bk.ru
Russian Federation, 420008, Kazan

S. Solovieva

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences

Email: ultrav@bk.ru
Russian Federation, 420088, Kazan

I. Antipin

Kazan Federal University

Email: ultrav@bk.ru
Russian Federation, 420008, Kazan

Bibliografia

  1. Antipin I.S., Alfimov M.V., Arslanov V.V., Burilov V.A., Vatsadze S.Z., Voloshin Y.Z., Volcho K.P., Gorbatchuk V.V., Gorbunova Y.G., Gromov S.P., Dudkin S.V., Zaitsev S.Y., Zakharova L.Y., Ziganshin M.A., Zolotukhina A.V., Kalinina M.A., Karakhanov E.A., Kashapov R.R., Koifman O.I., Konovalov A.I., Korenev V.S., Maksimov A.L., Mamardashvili N.Z., Mamardashvili G.M., Martynov A.G., Mustafina A.R., Nugmanov R.I., Ovsyannikov A.S., Padnya P.L., Potapov A.S., Selektor S.L., Sokolov M.N., Solovieva S.E., Stoikov I.I., Stuzhin P.A., Suslov E.V., Ushakov E.N., Fedin V.P., Fedorenko S.V., Fedorova O.A., Fedorov Y.V., Chvalun S.N., Tsivadze A.Y., Shtykov S.N., Shurpik D.N., Shcherbina M.A., Yakimova L.S. // Russ. Chem. Rev. 2021. V. 90. № 8. P. 895–1101. https://doi.org/10.1070/RCR5011
  2. Arzhakova O.V., Arzhakov M.S., Badamshina E.R., Bryuzgina E.B., Bryuzgin E.V., Bystrova A.V., Vaga-nov G.V., Vasilevskaya V.V., Vdovichenko A.Yu., Gallya-mov M.O., Gumerov R.A., Didenko A.L., Zefirov V.V., Karpov S.V., Komarov P.V., Kulichikhin V.G., Kuroch-kin S.A., Larin S.V., Malkin A.Ya., Milenin S.A., Muzafarov A.M., Molchanov V.S., Navrotskiy A.V., Novakov I.A., Panarin E.F., Panova I.G., Potemkin I.I., Svetlichny V.M., Sedush N.G., Serenko O.A., Uspenskii S.A., Philippova O.E., Khokhlov A.R., Chvalun S.N., Sheiko S.S., Shibaev A.V., Elmanovich I.V., Yudin V.E., Yakimansky A.V., Yaroslavov A.A. // Russ. Chem. Rev. 2022. V. 91. P. 12. https://doi.org/10.57634/RCR5062
  3. Yamamoto K., Imaoka T., Tanabe M., Kambe T. // Chem. Rev. 2019. V. 120. № 2. P. 1397–1437. https://doi.org/10.1021/acs.chemrev.9b00188
  4. Newkome G.R., Yao Z.Q., Baker G.R., Gupta V.K. // J. Org. Chem. 1985. V. 50. № 11. P. 2003–2004. https://doi.org/10.1021/jo00211a052
  5. Miller T.M., Neenan T.X. // Chem. Mater. 1990. V. 2. № 4. P. 346–349. https://doi.org/10.1021/cm00010a006
  6. Kolb H.C., Finn M.G., Sharpless K.B. // Angew. Chem., Int. Ed. 2001. V. 40. № 11. P. 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11< 2004::AID-ANIE2004>3.0.CO;2-5
  7. Meldal M., Tornøe C.W. // Chem. Rev. 2008. V. 108. № 8. P. 2952–3015. https://doi.org/10.1021/cr0783479
  8. Parshad B., Yadav P., Kerkhoff Y., Mittal A., Achazi K., Haag R., Sharma S.K. // New J. Chem. 2019. V. 43. № 30. P. 11984–11993. https://doi.org/10.1039/C9NJ02612F
  9. Wu P., Feldman A.K., Nugent A.K., Hawker C.J., Scheel A., Voit B., Pyun J., Fréchet J.M.J., Sharpless K.B., Fokin V.V. // Angew. Chem. 2004. V. 116. № 30. P. 4018–4022. https://doi.org/10.1002/ange.200454078
  10. Arseneault M., Levesque I., Morin J.F. // Macromolecules. 2012. V. 45. № 9. P. 3687–3694. https://doi.org/10.1021/ma300648r
  11. Agrahari A.K., Singh A.S., Mukherjee R., Tiwari V.K. // RSC Adv. 2020. V. 10. № 52. P. 31553–31562. https://doi.org/10.1039/D0RA05289B
  12. Qin T., Li X., Chen J., Zeng Y., Yu T., Yang G., Li Y. // Chem. Asian J. 2014. V. 9. № 12. P. 3641–3649. https://doi.org/10.1002/asia.201402960
  13. Mu S., Liu W., Ling Q., Liu X., Gu H. // Appl. Organomet. Chem. 2019. V. 33. № 6. P. e4908. https://doi.org/10.1002/aoc.4908
  14. Camponovo J., Ruiz J., Cloutet E., Astruc D. // Chem. Eur. J. 2009. V. 15. № 12. P. 2990–3002. https://doi.org/10.1002/chem.200801999
  15. Liu Y., Liu G.X., Zhang W., Du C., Wesdemiotis C., Cheng S.Z.D. // Macromolecules. 2019. V. 52. № 11. P. 4341–4348. https://doi.org/10.1021/acs.macromol.9b00549
  16. Palmans A.R.A., Vekemans J.A.J.M., Fischer H., Hik-met R.A., Meijer E.W. // Chem. Eur. J. 1997. V. 3. № 2. P. 300–307. https://doi.org/10.1002/chem.19970030220
  17. Armarego W.L.F. Purification of laboratory chemicals. 8th ed. Elsevier, Butterworth-Heinemann, 2017.
  18. Wijtmans M., de Graaf C., de Kloe G., Istyastono E.P., Smit J., Lim H., Boonnak R., Nijmeijer S., Smits R.A., Jongejan A., Zuiderveld O., de Esch I.J.P., Leurs R. // J. Med. Chem. 2011. V. 54. № 6. P. 1693–1703. https://doi.org/10.1021/jm1013488
  19. Chen H., Hou S., Tan Y. // Supramol. Chem. 2016. V. 28. № 9–10. P. 801–809. https://doi.org/10.1080/10610278.2016.1142089
  20. Heller P., Mohr N., Birke A., Weber B., Reske-Kunz A., Bros M., Barz M. // Macromol. Biosci. 2015. V. 15. № 1. P. 63–73. https://doi.org/10.1002/mabi.201400417

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (239KB)
3.

Baixar (153KB)
4.

Baixar (323KB)
5.

Baixar (121KB)

Declaração de direitos autorais © А.М. Фатыхова, В.А. Бурилов, С.Е. Соловьева, И.С. Антипин, 2023