Компьютерное моделирование двухфазного каталитического процесса в присутствии полимерных микрогелей

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом диссипативной динамики частиц впервые смоделирована реакция двухфазного катализа с адсорбированными на границе фаз микрогелями с каталитическими группами. Показано, что скорость каталитического процесса возрастает со степенью деформации полимерной сетки, которая зависит от доли сшивателя и растворимости полимера в обеих фазах. Установлено, что наибольшая скорость катализа наблюдалась для случая, когда микрогель оказывался растворим в обеих фазах ввиду увеличения его пористости (по сравнению с амфифильными микрогелями) и площади контакта “вода–микрогель–масло” с одновременным уменьшением времени достижения реагентами каталитических групп за счет уплощения микрогеля. Полученные результаты могут быть полезны для повышения эффективности широкого спектра каталитических реакций рассмотренного типа за счет применения сетчатых макромолекул.

Об авторах

Р. А. Гумеров

Московский государственный университет
имени М.В. Ломоносова, Физический факультет

Email: igor@polly.phys.msu.ru
Россия, 119991, Москва

М. В. Анахов

Московский государственный университет
имени М.В. Ломоносова, Физический факультет

Email: igor@polly.phys.msu.ru
Россия, 119991, Москва

И. И. Потемкин

Московский государственный университет
имени М.В. Ломоносова, Физический факультет

Автор, ответственный за переписку.
Email: igor@polly.phys.msu.ru
Россия, 119991, Москва

Список литературы

  1. Karg M., Pich A., Hellweg T., Hoare T., Lyon L.A., Crassous J.J., Suzuki D., Gumerov R.A., Schneider S., Potemkin I.I., Richtering W. // Langmuir. 2019. V. 35. P. 6231–6255. https://doi.org/10.1021/acs.langmuir.8b04304
  2. Anakhov M.V., Gumerov R.A., Potemkin I.I. // Mendeleev Commun. 2020. V. 30. P. 555–562. https://doi.org/10.1016/j.mencom.2020.09.002
  3. Lyon L.A., Fernandez-Nieves A. // Annu. Rev. Phys. Chem. 2012. V. 63. P. 25–43. https://doi.org/10.1146/annurev-physchem-032511-143735
  4. Richtering W. // Langmuir. 2012. V. 28 P. 17218–17229. https://doi.org/10.1021/la302331s
  5. Zlotin S.G., Kucherenko A.S., Beletskaya I.P. // Russ. Chem. Rev. 2009. V. 78. P. 737–784. https://doi.org/10.1070/RC2009v078n08ABEH004040
  6. Beletskaya I.P., Kashin A.N., Litvinov A.E., Tyurin V.S., Valetsky P.M., van Koten G. // Organometallics. 2006. V. 25. P. 154–158. https://doi.org/10.1021/om050562x
  7. Beletskaya I.P., Khokhlov A.R., Tarasenko E.A., Tyu-rin V.S. // J. Organomet. Chem. 2007. V. 692. P. 4402–4406. https://doi.org/https://doi.org/10.1016/j.jorganchem.2007.06.056
  8. Beletskaya I.P., Kashin A.N., Khotina I.A., Khokh-lov A.R. // Synlett. 2008. P. 1547–1552. https://doi.org/10.1055/s-2008-1078430
  9. Beletskaya I.P., Selivanova A.V., Tyurin V.S., Matve-ev V.V., Khokhlov A.R. // Russ. J. Org. Chem. 2010. V. 46. P. 157–161. https://doi.org/10.1134/S1070428010020016
  10. Xiong L., Zhang H., Zhong A., He Z., Huang K. // Chem. Commun. 2014. V. 50. P. 14778–14781. https://doi.org/10.1039/c4cc06573e
  11. Ahmed E., Cho J., Friedmann L., Jang S.S., Weck M. // J. Am. Chem. Soc. 2022. V. 2. P. 2316–2326. https://doi.org/10.1021/jacsau.2c00367
  12. Hajji C., Haag R. Hyperbranched Polymers as Platforms for Catalysts. In: Dendrimer Catalysis. Gade L.H. (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. V. 20. 2006. pp. 149–176. https://doi.org/10.1007/3418_035
  13. Wiese S., Spiess A.C., Richtering W. // Angew. Chem. Int. Ed. 2013. V. 52. P. 576–579. https://doi.org/10.1002/anie.201206931
  14. Ajmal M., Demirci S., Siddiq M., Aktas N., Sahiner N. // New J. Chem. 2016. V. 40. P. 1485–1496. https://doi.org/10.1039/C5NJ02298C
  15. Borrmann R., Palchyk V., Pich A., Rueping M. // ACS Catal. 2018. V. 8. P. 7991–7996. https://doi.org/10.1021/acscatal.8b01408
  16. Tan K.H., Xu W., Stefka S., Demco D.E., Kharandiuk T., Ivasiv V., Nebesnyi R., Petrovskii V.S., Potemkin I.I., Pich A. // Angew. Chem. Int. Ed. 2019. V. 58. P. 9791–9796. https://doi.org/10.1002/anie.201901161
  17. Kleinschmidt D., Fernandes M.S., Mork M., Meyer A.A., Krischel J., Anakhov M.V., Gumerov R.A., Potemkin I.I., Rueping M., Pich A. // J. Colloid Interface Sci. 2020. V. 559. P. 76–87. https://doi.org/10.1016/j.jcis.2019.10.005
  18. Kleinschmidt D., Nothdurft K., Anakhov M.V., Meyer A.A., Mork M., Gumerov R.A., Potemkin I.I., Richtering W., Pich A. // Mater. Adv. 2020. V. 1. P. 2983–2993. https://doi.org/10.1039/d0ma00407c
  19. Sabadasch V., Dirksen M., Fandrich P., Cremer J., Biere N., Anselmetti D., Hellweg T. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 49181–49188. https://doi.org/10.1021/acsami.2c14415
  20. Gumerov R.A., Rumyantsev A.M., Rudov A.A., Pich A., Richtering W., Möller M., Potemkin I.I. // ACS Macro Lett. 2016. V. 5. P. 612–616. https://doi.org/10.1021/acsmacrolett.6b00149
  21. Gumerov R.A., Filippov S.A., Richtering W., Pich A., Potemkin I.I. // Soft Matter. 2019. V. 15. P. 3978–3986. https://doi.org/10.1039/C9SM00389D
  22. Hoogerbrugge P.J., Koelman J.M.V.A. // Europhys. Lett. 1992. V. 19. P. 155–160. https://doi.org/10.1209/0295-5075/19/3/001
  23. Español P., Warren P. // Europhys. Lett. 1995. V. 30. P. 191–196. https://doi.org/10.1209/0295-5075/30/4/001
  24. Groot R.D., Warren P.B. // J. Chem. Phys. 1997. V. 107. P. 4423–4435. https://doi.org/10.1063/1.474784
  25. Gama Goicochea A., Romero-Bastida M., López-Ren-dón R. // Mol. Phys. 2007. V. 105. P. 2375–2381. https://doi.org/10.1080/00268970701624679
  26. Thompson A.P., Aktulga H.M., Berger R., Bolintine-anu D.S., Brown W.M., Crozier P.S., in ’t Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. // Comput. Phys. Commun. 2022. V. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
  27. Komarova G.A., Kozhunova E.Yu., Potemkin I.I. // Molecules. 2022. V. 27. P. 8549. https://doi.org/10.3390/molecules27238549
  28. Voevodin V.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Yu., Stefanov K.S., Voevodin V.V., Zhumatiy S.A. // Supercomput. Front. Innov. 2019. V. 6. P. 4–11. https://doi.org/10.14529/jsfi190201

Дополнительные файлы


© Р.А. Гумеров, М.В. Анахов, И.И. Потемкин, 2023