COMPUTER SIMULATION OF BIPHASIC CATALYTIC PROCESS IN PRESENCE OF POLYMER MICROGELS
- Authors: Gumerov R.A.1, Anakhov M.V.1, Potemkin I.I.1
-
Affiliations:
- Lomonosov Moscow State University, Physics Department
- Issue: Vol 512, No 1 (2023)
- Pages: 130-136
- Section: PHYSICAL CHEMISTRY
- URL: https://ter-arkhiv.ru/2686-9535/article/view/651962
- DOI: https://doi.org/10.31857/S268695352360006X
- EDN: https://elibrary.ru/ZIEVFY
- ID: 651962
Cite item
Abstract
Dissipative particle dynamics were used for the first time to simulate the reaction of biphasic catalysis with microgels adsorbed at the phase boundary with catalytic groups. It is shown that the rate of the catalytic process increases with the degree of deformation of the polymer network, which depends on the amount of the crosslinker and the solubility of the polymer in both phases. In this case, the highest rate of catalysis was observed for the microgel soluble in both phases due to an increase in its porosity (compared to amphiphilic microgels) and the “water–microgel–oil” contact area with a simultaneous decrease in the time for reagents to reach the catalytic groups due to the flattening of the microgel. The results obtained can be useful for increasing the efficiency of a wide range of catalytic reactions of the considered type through the use of network macromolecules.
About the authors
R. A. Gumerov
Lomonosov Moscow State University, Physics Department
Email: igor@polly.phys.msu.ru
Russian Federation, 119991, Moscow
M. V. Anakhov
Lomonosov Moscow State University, Physics Department
Email: igor@polly.phys.msu.ru
Russian Federation, 119991, Moscow
I. I. Potemkin
Lomonosov Moscow State University, Physics Department
Author for correspondence.
Email: igor@polly.phys.msu.ru
Russian Federation, 119991, Moscow
References
- Karg M., Pich A., Hellweg T., Hoare T., Lyon L.A., Crassous J.J., Suzuki D., Gumerov R.A., Schneider S., Potemkin I.I., Richtering W. // Langmuir. 2019. V. 35. P. 6231–6255. https://doi.org/10.1021/acs.langmuir.8b04304
- Anakhov M.V., Gumerov R.A., Potemkin I.I. // Mendeleev Commun. 2020. V. 30. P. 555–562. https://doi.org/10.1016/j.mencom.2020.09.002
- Lyon L.A., Fernandez-Nieves A. // Annu. Rev. Phys. Chem. 2012. V. 63. P. 25–43. https://doi.org/10.1146/annurev-physchem-032511-143735
- Richtering W. // Langmuir. 2012. V. 28 P. 17218–17229. https://doi.org/10.1021/la302331s
- Zlotin S.G., Kucherenko A.S., Beletskaya I.P. // Russ. Chem. Rev. 2009. V. 78. P. 737–784. https://doi.org/10.1070/RC2009v078n08ABEH004040
- Beletskaya I.P., Kashin A.N., Litvinov A.E., Tyurin V.S., Valetsky P.M., van Koten G. // Organometallics. 2006. V. 25. P. 154–158. https://doi.org/10.1021/om050562x
- Beletskaya I.P., Khokhlov A.R., Tarasenko E.A., Tyu-rin V.S. // J. Organomet. Chem. 2007. V. 692. P. 4402–4406. https://doi.org/https://doi.org/10.1016/j.jorganchem.2007.06.056
- Beletskaya I.P., Kashin A.N., Khotina I.A., Khokh-lov A.R. // Synlett. 2008. P. 1547–1552. https://doi.org/10.1055/s-2008-1078430
- Beletskaya I.P., Selivanova A.V., Tyurin V.S., Matve-ev V.V., Khokhlov A.R. // Russ. J. Org. Chem. 2010. V. 46. P. 157–161. https://doi.org/10.1134/S1070428010020016
- Xiong L., Zhang H., Zhong A., He Z., Huang K. // Chem. Commun. 2014. V. 50. P. 14778–14781. https://doi.org/10.1039/c4cc06573e
- Ahmed E., Cho J., Friedmann L., Jang S.S., Weck M. // J. Am. Chem. Soc. 2022. V. 2. P. 2316–2326. https://doi.org/10.1021/jacsau.2c00367
- Hajji C., Haag R. Hyperbranched Polymers as Platforms for Catalysts. In: Dendrimer Catalysis. Gade L.H. (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. V. 20. 2006. pp. 149–176. https://doi.org/10.1007/3418_035
- Wiese S., Spiess A.C., Richtering W. // Angew. Chem. Int. Ed. 2013. V. 52. P. 576–579. https://doi.org/10.1002/anie.201206931
- Ajmal M., Demirci S., Siddiq M., Aktas N., Sahiner N. // New J. Chem. 2016. V. 40. P. 1485–1496. https://doi.org/10.1039/C5NJ02298C
- Borrmann R., Palchyk V., Pich A., Rueping M. // ACS Catal. 2018. V. 8. P. 7991–7996. https://doi.org/10.1021/acscatal.8b01408
- Tan K.H., Xu W., Stefka S., Demco D.E., Kharandiuk T., Ivasiv V., Nebesnyi R., Petrovskii V.S., Potemkin I.I., Pich A. // Angew. Chem. Int. Ed. 2019. V. 58. P. 9791–9796. https://doi.org/10.1002/anie.201901161
- Kleinschmidt D., Fernandes M.S., Mork M., Meyer A.A., Krischel J., Anakhov M.V., Gumerov R.A., Potemkin I.I., Rueping M., Pich A. // J. Colloid Interface Sci. 2020. V. 559. P. 76–87. https://doi.org/10.1016/j.jcis.2019.10.005
- Kleinschmidt D., Nothdurft K., Anakhov M.V., Meyer A.A., Mork M., Gumerov R.A., Potemkin I.I., Richtering W., Pich A. // Mater. Adv. 2020. V. 1. P. 2983–2993. https://doi.org/10.1039/d0ma00407c
- Sabadasch V., Dirksen M., Fandrich P., Cremer J., Biere N., Anselmetti D., Hellweg T. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 49181–49188. https://doi.org/10.1021/acsami.2c14415
- Gumerov R.A., Rumyantsev A.M., Rudov A.A., Pich A., Richtering W., Möller M., Potemkin I.I. // ACS Macro Lett. 2016. V. 5. P. 612–616. https://doi.org/10.1021/acsmacrolett.6b00149
- Gumerov R.A., Filippov S.A., Richtering W., Pich A., Potemkin I.I. // Soft Matter. 2019. V. 15. P. 3978–3986. https://doi.org/10.1039/C9SM00389D
- Hoogerbrugge P.J., Koelman J.M.V.A. // Europhys. Lett. 1992. V. 19. P. 155–160. https://doi.org/10.1209/0295-5075/19/3/001
- Español P., Warren P. // Europhys. Lett. 1995. V. 30. P. 191–196. https://doi.org/10.1209/0295-5075/30/4/001
- Groot R.D., Warren P.B. // J. Chem. Phys. 1997. V. 107. P. 4423–4435. https://doi.org/10.1063/1.474784
- Gama Goicochea A., Romero-Bastida M., López-Ren-dón R. // Mol. Phys. 2007. V. 105. P. 2375–2381. https://doi.org/10.1080/00268970701624679
- Thompson A.P., Aktulga H.M., Berger R., Bolintine-anu D.S., Brown W.M., Crozier P.S., in ’t Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. // Comput. Phys. Commun. 2022. V. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
- Komarova G.A., Kozhunova E.Yu., Potemkin I.I. // Molecules. 2022. V. 27. P. 8549. https://doi.org/10.3390/molecules27238549
- Voevodin V.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Yu., Stefanov K.S., Voevodin V.V., Zhumatiy S.A. // Supercomput. Front. Innov. 2019. V. 6. P. 4–11. https://doi.org/10.14529/jsfi190201
Supplementary files
