SYNTHESIS AND ANTIVIRAL ACTIVITY OF COPOLYMERS OF OXYCINNAMIC ACID WITH N-VINYLAMIDES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Radical copolymerization of coumarin with N-vinylamides (N‑vinylpyrrolidone, N-methyl-N-vinylacetamide, N-vinylformamide) was used to prepare copolymers of various natures and varied molecular masses. After the subsequent reactions in polymer chains, water-soluble copolymers of salts of oxycinnamic acid and its hydrazides were obtained. The synthesized copolymers of salts and hydrazides of oxycinnamic acid with N-vinylamides have low cytotoxicity and demonstrate the pronounced antiviral activity against human respiratory syncytial virus (strain A2).

Sobre autores

N. Nesterova

Institute of Macromolecular Compounds, Russian Academy of Sciences

Autor responsável pela correspondência
Email: lab.2305@mail.ru
Russian Federation, 199004, Saint Petersburg

А. Shtro

Smorodintsev Research Institute of Influenza, Russian Ministry of Health

Email: lab.2305@mail.ru
Russian Federation, 197376, Saint Petersburg

Е. Panarin

Institute of Macromolecular Compounds, Russian Academy of Sciences

Email: lab.2305@mail.ru
Russian Federation, 199004, Saint Petersburg

Bibliografia

  1. Anderson R.A., Feathergill K., Diao X., Cooper M., Kirkpatrick R., Spear P., Waller D.P., Chany C., Doncel G.F., Herold B., Lourens J.D., Zaneveld L.J. // J. Androl. 2000. V. 21. № 6. P. 862–875. https://doi.org/10.1002/j.1939-4640.2000.tb03417.x
  2. Schandock F., Riber C.F., Röcker A., Müller J.A., Harms M., Gajda P., Zuwala K., Andersen A.H.F., Løvschall K.B., Tolstrup M., Keppel F., Münch J., Zelikin A.N. // Adv. Healthcare Mater. 2017. V. 6. № 23. 1700748. https://doi.org/10.1002/adhm.201700748
  3. Зарубаев В.В., Бучков Е.В., Назарова О.В., Золотова Ю.И., Панарин Е.Ф. // ДАН. Науки о жизни. 2022. Т. 506. С. 392–395. https://doi.org/10.31857/S2686738922050328
  4. Donalisio M., Ranucci E., Cagno V., Civra A., Manfredi A., Cavalli R., Ferruti P., Lembo D. // Antimicrob. Agents Chemother. 2014. V. 58. № 10. P. 6315–6319. https://doi.org/10.1128/aac.03420-14
  5. Witvrouw M., Fikkert V., Pluymers W., Matthews B., Mardel K., Schols D., Raff J., Debyser Z., De Clercq E., Holan G., Pannecouque C. // Mol. Pharmacol. 2000. V. 58. № 5. P. 1100–1108. https://doi.org/10.1124/mol.58.5.1100
  6. Bianculli R.H., Mase J.D., Schulz M.D. // Macromolecules. 2020. V. 53. № 21. P. 9158–9186. https://doi.org/10.1021/acs.macromol.0c01273
  7. Pachota M., Klysik K., Synowiec A., Ciejka J., Szczubiałka K., Pyrc K., Nowakowska M. // J. Med. Chem. 2017. V. 60. P. 8620–8630. https://doi.org/10.1021/acs.jmedchem.7b01289
  8. Asaftei S., de Clercq E. // J. Med. Chem. 2010. V. 53. № 9. P. 3480–3488. https://doi.org/10.1021/jm100093p
  9. Панарин Е.Ф., Нестерова Н.А., Штро А.А. Сополимеры N-виниламидов с солями оксикоричной кислоты. Патент РФ RU2796753. 2023. Бюл. изобр. № 16.
  10. Niks M., Otto M. // J. Immunol. Methods. 1990. V. 130. № 1. P. 149–151. https://doi.org/10.1016/0022-1759(90)90309-j
  11. Reed L.J., Muench H. // Am. J. Hyg. 1938. V. 27. № 3. P. 493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408
  12. Indrayanto G., Putra G.S., Suhud F. // Profiles of Drug Substances, Excipients and Related Methodology. 2021. V. 46. P. 273–307. https://doi.org/10.1016/bs.podrm.2020.07.005

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (62KB)
3.

Baixar (67KB)

Declaração de direitos autorais © Н.А. Нестерова, А.А. Штро, Е.Ф. Панарин, 2023