Thermodynamic functions of Tm2O3‧2HfO2 solid solution and Shottky anomaly

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The molar heat capacity of the solid solution Tm2O3‧2HfO2 has been determined for the first time by relaxation, adiabatic and differential scanning calorimetry, the temperature dependences of entropy and enthalpy increment in the temperature region 0–1800 K have been calculated, and the contribution to the heat capacity of the Schottky anomaly at 0–300 K has been evaluated.

Texto integral

Acesso é fechado

Sobre autores

А. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
Rússia, 119991, Moscow

P. Gagarin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
Rússia, 119991, Moscow

V. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: guskov@igic.ras.ru
Rússia, 119991, Moscow

А. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
Rússia, 119991, Moscow

K. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
Rússia, 119991, Moscow

Bibliografia

  1. Шевченко А.В., Лопато Л.М., Кирьякова И.Е. // Изв. АН СССР. Неорган. матер. 1984. Т. 20. С. 1991–1996.
  2. Andrievskaya E.R. // J. Europ. Ceram. Soc. 2008. V. 28. P. 2363–2388. https://doi.org/10.1016/jeurceramsoc.2008.01.009
  3. Duran P., Pascual C.J. // Mater. Sci. 1984. V. 19. P. 1178–1184. https://doi.org/10.1007/bf01120027
  4. Trubelja M.F., Stubican V.S. // J. Am. Ceram. Soc. 1988. V. 71. P. 662–666. https://doi.org/10.1111/j.1151–2916.1988.tb06385.x
  5. Yokokawa H., Sakai N., Kawada T., Dokiy M.J. // Am. Ceram. Soc. 1990. V. 73. P. 649–658. htps://doi.org/10.1111/j.1151–2916.1990.tb06567.x
  6. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. P. 55–143. htts://doi.org/10.1016/0079–6786(83)90001–8
  7. Banchard P.E.R., Liu S., Kennedy B.J., Ling C.D., Avdeev M., Aitken J.B., Cowie B.C.C., Tadich A.J. // Phys. Chem. C. 2013. V. 117. P. 2266–2273. https://doi.org/10.1021/jp311329q
  8. Gagarin P.G., Guskov A.V., Guskov V.N., Tyurin A.V., Khoroshilov A.V., Gavrichev K.S. // Ceram. Int. 2021. V. 47. P. 2892–2896. https://doi.org/10.1016/j.ceramint.2020.09.072
  9. Портной К.И., Тимофеева Н.И., Салибеков С.Е., Романович И.В. // Изв. АН СССР. Неорган. матер. 1970. Т. 6. С. 91–95.
  10. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50–61. https//doi.org/10.1016/j.calphad.2018.02.001
  11. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083–2094. https:/doi.org/10.1021/je400316m
  12. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Тюрин А.В., Гавричев К.С. // ЖФХ. 2022. Т. 96. С. 1230–1239. https:/doi.org/31857.S0044445372209014X
  13. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Тюрин А.В., Гавричев К.С. // Докл. РАН. Химия, науки о материалах. 2021. Т. 498. С. 83–87. https://doi.org/31857.S2686953521050083
  14. Tari A. The specific heat of matter at low temperatures. London, Imperial College Press, 2003. 211 p. https://oi.org/10.1142/9781860949395_0006
  15. Zhou H.D., Wiebe C.R., Janik J.A., Balicas L., Yo Y.J., Qiu Y., Copley J.R.D., Gardner J.S. // Phys. Rev. Lett. 2008. V. 101. 227204. https://doi.org/10.1103/PhysRevLett.101.227204
  16. Westrum E.F. Jr. // J. Therm. Anal. 1985. V. 30. P. 1209–1215. https://doi.org/10.1007/BF01914288
  17. Chirico R.D., Westrum E.F. Jr. // J. Chem. Thermodyn. 1980. V. 12. P. 71–85. https://di.org/10.1016/0021–9614(80)90118–4
  18. Ji Y., Beridze G., Bosbach D., Kowalski P.M. // J. Nucl. Mater. 2017. V. 494. P. 172–181. http://dx.doi.org/10.1016/j.jnucmat.2017.07.026
  19. Konings R.J.M., Beneš O., Kovács A., Manara D., Sedmidubský D., Gorokhov L., Iorish V.S., Yungman V., Shenyavskaya E., Osina E.J. // Phys. Chem. Refer. Data. 2014. V. 43. 013101. https://doi.org/10.1063/1.4825256
  20. Pankratz L.B. Thermodynamic properties of elements and oxides. Washington, D.C., U.S. Dept. of the Interior, Bureau of Mines, 1982. V. 672. 509 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffractogram of a Tm2O3-2HfO2 solid solution sample, structural type Fm3m, a = 5.170(7) Å, CuKa radiation, λ = 1.5418 Å.

Baixar (56KB)
3. Fig. 2. Morphology of the surface of a sample of Tm2O3-2HfO2 solid solution (fluorite).

Baixar (261KB)
4. Fig. 3. Experimental heat capacity of a Tm2O3–2HfO2 solid solution based on the results of relaxation (1), adiabatic (2) and differential scanning (3) calorimetry; low temperature regions (0-27 K) and data docking of adiabatic and differential scanning calorimetry (320-360 K) are shown in the insets.

Baixar (165KB)
5. Fig. 4. Molar heat capacity of a solid solution Tm2O3-2HfO2 in the temperature range 0-37 K according to the results of relaxation (1) and adiabatic (2) calorimetry; heat capacity of solid solutions Lu2O3-2HfO2 (3) [13] and Dy2O3-2HfO2 (4) [12].

Baixar (69KB)
6. Fig. 5. The difference in the heat capacities of solid solutions Tm2O3-2HfO2 (this work) and Lu2O3-2HfO2 [13].

Baixar (63KB)
7. Fig. 6. High-temperature heat capacity of Tm2O3-2HfO2 solid solution (1) and model calculation (2) from the heat capacities of simple oxides Tm2O3 [19] and HfO2 [20], smoothed heat capacity (3) (Table 2).

Baixar (74KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024