Thermodynamic functions of Tm2O3‧2HfO2 solid solution and Shottky anomaly

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The molar heat capacity of the solid solution Tm2O3‧2HfO2 has been determined for the first time by relaxation, adiabatic and differential scanning calorimetry, the temperature dependences of entropy and enthalpy increment in the temperature region 0–1800 K have been calculated, and the contribution to the heat capacity of the Schottky anomaly at 0–300 K has been evaluated.

全文:

受限制的访问

作者简介

А. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
俄罗斯联邦, 119991, Moscow

P. Gagarin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
俄罗斯联邦, 119991, Moscow

V. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: guskov@igic.ras.ru
俄罗斯联邦, 119991, Moscow

А. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
俄罗斯联邦, 119991, Moscow

K. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
俄罗斯联邦, 119991, Moscow

参考

  1. Шевченко А.В., Лопато Л.М., Кирьякова И.Е. // Изв. АН СССР. Неорган. матер. 1984. Т. 20. С. 1991–1996.
  2. Andrievskaya E.R. // J. Europ. Ceram. Soc. 2008. V. 28. P. 2363–2388. https://doi.org/10.1016/jeurceramsoc.2008.01.009
  3. Duran P., Pascual C.J. // Mater. Sci. 1984. V. 19. P. 1178–1184. https://doi.org/10.1007/bf01120027
  4. Trubelja M.F., Stubican V.S. // J. Am. Ceram. Soc. 1988. V. 71. P. 662–666. https://doi.org/10.1111/j.1151–2916.1988.tb06385.x
  5. Yokokawa H., Sakai N., Kawada T., Dokiy M.J. // Am. Ceram. Soc. 1990. V. 73. P. 649–658. htps://doi.org/10.1111/j.1151–2916.1990.tb06567.x
  6. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. P. 55–143. htts://doi.org/10.1016/0079–6786(83)90001–8
  7. Banchard P.E.R., Liu S., Kennedy B.J., Ling C.D., Avdeev M., Aitken J.B., Cowie B.C.C., Tadich A.J. // Phys. Chem. C. 2013. V. 117. P. 2266–2273. https://doi.org/10.1021/jp311329q
  8. Gagarin P.G., Guskov A.V., Guskov V.N., Tyurin A.V., Khoroshilov A.V., Gavrichev K.S. // Ceram. Int. 2021. V. 47. P. 2892–2896. https://doi.org/10.1016/j.ceramint.2020.09.072
  9. Портной К.И., Тимофеева Н.И., Салибеков С.Е., Романович И.В. // Изв. АН СССР. Неорган. матер. 1970. Т. 6. С. 91–95.
  10. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50–61. https//doi.org/10.1016/j.calphad.2018.02.001
  11. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083–2094. https:/doi.org/10.1021/je400316m
  12. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Тюрин А.В., Гавричев К.С. // ЖФХ. 2022. Т. 96. С. 1230–1239. https:/doi.org/31857.S0044445372209014X
  13. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Тюрин А.В., Гавричев К.С. // Докл. РАН. Химия, науки о материалах. 2021. Т. 498. С. 83–87. https://doi.org/31857.S2686953521050083
  14. Tari A. The specific heat of matter at low temperatures. London, Imperial College Press, 2003. 211 p. https://oi.org/10.1142/9781860949395_0006
  15. Zhou H.D., Wiebe C.R., Janik J.A., Balicas L., Yo Y.J., Qiu Y., Copley J.R.D., Gardner J.S. // Phys. Rev. Lett. 2008. V. 101. 227204. https://doi.org/10.1103/PhysRevLett.101.227204
  16. Westrum E.F. Jr. // J. Therm. Anal. 1985. V. 30. P. 1209–1215. https://doi.org/10.1007/BF01914288
  17. Chirico R.D., Westrum E.F. Jr. // J. Chem. Thermodyn. 1980. V. 12. P. 71–85. https://di.org/10.1016/0021–9614(80)90118–4
  18. Ji Y., Beridze G., Bosbach D., Kowalski P.M. // J. Nucl. Mater. 2017. V. 494. P. 172–181. http://dx.doi.org/10.1016/j.jnucmat.2017.07.026
  19. Konings R.J.M., Beneš O., Kovács A., Manara D., Sedmidubský D., Gorokhov L., Iorish V.S., Yungman V., Shenyavskaya E., Osina E.J. // Phys. Chem. Refer. Data. 2014. V. 43. 013101. https://doi.org/10.1063/1.4825256
  20. Pankratz L.B. Thermodynamic properties of elements and oxides. Washington, D.C., U.S. Dept. of the Interior, Bureau of Mines, 1982. V. 672. 509 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diffractogram of a Tm2O3-2HfO2 solid solution sample, structural type Fm3m, a = 5.170(7) Å, CuKa radiation, λ = 1.5418 Å.

下载 (56KB)
3. Fig. 2. Morphology of the surface of a sample of Tm2O3-2HfO2 solid solution (fluorite).

下载 (261KB)
4. Fig. 3. Experimental heat capacity of a Tm2O3–2HfO2 solid solution based on the results of relaxation (1), adiabatic (2) and differential scanning (3) calorimetry; low temperature regions (0-27 K) and data docking of adiabatic and differential scanning calorimetry (320-360 K) are shown in the insets.

下载 (165KB)
5. Fig. 4. Molar heat capacity of a solid solution Tm2O3-2HfO2 in the temperature range 0-37 K according to the results of relaxation (1) and adiabatic (2) calorimetry; heat capacity of solid solutions Lu2O3-2HfO2 (3) [13] and Dy2O3-2HfO2 (4) [12].

下载 (69KB)
6. Fig. 5. The difference in the heat capacities of solid solutions Tm2O3-2HfO2 (this work) and Lu2O3-2HfO2 [13].

下载 (63KB)
7. Fig. 6. High-temperature heat capacity of Tm2O3-2HfO2 solid solution (1) and model calculation (2) from the heat capacities of simple oxides Tm2O3 [19] and HfO2 [20], smoothed heat capacity (3) (Table 2).

下载 (74KB)

版权所有 © Russian Academy of Sciences, 2024