Synthesis of spherical LiFePO₄ microparticles with encapsulated carbon nanotubes for high-power lithium-ion batteries
- Авторлар: Babkin A.V.1, Drozhzhin O.A.1, Kubarkov A.V.1, Antipov E.V.1,2, Sergeyev V.G.1
-
Мекемелер:
- Department of Chemistry, Lomonosov Moscow State University
- Skolkovo Institute of Science and Technology
- Шығарылым: Том 516, № 1 (2024)
- Беттер: 8-20
- Бөлім: CHEMISTRY
- URL: https://ter-arkhiv.ru/2686-9535/article/view/651904
- DOI: https://doi.org/10.31857/S2686953524030024
- EDN: https://elibrary.ru/ZJGEIV
- ID: 651904
Дәйексөз келтіру
Аннотация
Lithium ferrophosphate – LiFePO₄ (LFP) – is one of the widely studied and used materials for lithium-ion batteries. However, one of the main drawbacks of LFP is its poor electrical conductivity. To address this issue, we propose an effective approach based on encapsulating carbon nanotubes within the volume of LFP particles in the volume of spherical LFP particles. Electrodes based on the obtained materials exhibit more aTₜᵣactive electrochemical characteristics than LFP obtained by the standard method: increased specific capacity (62 and 92 mAh g–1 at a current density of 20C for LFP and LFP/SWCNT, respectively), stability of cyclic characteristics (preservation of 98% capacity after 100 charge/discharge cycles for LFP/SWCNT and 96.5% for LFP), as well as reduced charge transfer resistance. Encapsulation of SWCNT into the structure of iron phosphate during deposition is an easy-to-implement approach to formation modified LFP-based cathodes with improved characteristics, which expands the possibilities of their practical application in high-power lithium-ion batteries.
Толық мәтін

Авторлар туралы
A. Babkin
Department of Chemistry, Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: A.V.Babkin93@yandex.ru
Faculty of Chemistry
Ресей, 119991 MoscowO. Drozhzhin
Department of Chemistry, Lomonosov Moscow State University
Email: A.V.Babkin93@yandex.ru
Faculty of Chemistry
Ресей, 119991 MoscowA. Kubarkov
Department of Chemistry, Lomonosov Moscow State University
Email: A.V.Babkin93@yandex.ru
Faculty of Chemistry
Ресей, 119991 MoscowE. Antipov
Department of Chemistry, Lomonosov Moscow State University; Skolkovo Institute of Science and Technology
Email: A.V.Babkin93@yandex.ru
Corresponding Member of the RAS, Faculty of Chemistry
Ресей, 119991 Moscow; 121205 MoscowV. Sergeyev
Department of Chemistry, Lomonosov Moscow State University
Email: A.V.Babkin93@yandex.ru
Faculty of Chemistry
Ресей, 119991 MoscowӘдебиет тізімі
- Deng D. // Energy Science & Engineering. 2015. V. 3. № 5. P. 385–418. https://doi.org/10.1002/ese3.95
- Li J., Du Z., Ruther R.E. An S.J., David L.A., Hays K., Wood M., Phillip D.N., Sheng Y., Mao C., Kalnaus S., Daniel C., Wood III D.L. // JOM. 2017. V. 69. P. 1484–1496. https://doi.org/10.1007/s11837-017-2404-9
- Miao Y., Hynan P., von Jouanne A., Yokochi A. // Energies. 2019. V. 12. № 6. P. 1074–1094. https://doi.org/10.3390/en12061074
- Camargos P.H., Pedro dos Santos H.J., dos Santos I.R., Ribeiro G.S., Caetano R.C. // Int. J. Energy Res. 2022. V. 46. № 13. P. 19258–19268. https://doi.org/10.1002/er.7993
- Nitta N., Wu F., Lee J.T., Yushin G. // Mater. Today. 2015. V. 18. № 5. P. 252–264. https://doi.org/10.1016/j.mattod.2014.10.040
- Mohamed N., Allam N.K. // RSC Adv. 2020. V. 10. № 37. P. 21662–21685. https://doi.org/10.1039/D0RA03314F
- Wang Y., Xu C., Tian X., Wang S., Zhao Y. // Chin. J. Struct. Chem. 2023. V. 42. № 10. P. 100167. https://doi.org/10.1016/j.cjsc.2023.100167
- Murdock B.E., Toghill K.E., Tapia‐Ruiz N. // Adv. Energy Mater. 2021. V. 11. № 39. P. 2102028. https://doi.org/10.1002/aenm.202102028
- Guan P., Zhou L., Yu Z., Sun Y., Liu Y., Wu F., Jiang Y., Chu D. // J. Energy Chem. 2020. V. 43. P. 220–235. https://doi.org/10.1016/j.jechem.2019.08.022
- Mukhopadhyay A., Jangid M.K. // Science. 2018. V. 359. № 6383. P. 1463–1463. https://doi.org/10.1126/science.aat245
- Van Noorden R. // Nature. 2014. V. 507. P. 26–28. https://doi.org/10.1038/507026a
- Jie Y., Ren X., Cao R., Cai W., Jiao S. // Adv. Funct. Mater. 2020. V. 30. № 25. P. 1910777. https://doi.org/10.1002/adfm.201910777
- Pender P.J., Jha G., Youn D.H., Ziegler J.M., Andoni I., Choi E.J., Heller A., Dunn B.S., Weiss P.S., Pennere R.M., Mullins B.C. // ACS Nano. 2020. V. 14. № 2. P. 1243–1295. https://doi.org/10.1021/acsnano.9b04365
- Zhang J.-C., Liu Z.-D., Zeng C.-H., Luo J.-W., Deng Y.-D., Cui X.-Y., Chen Y.-N. // Rare Met. 2022. V. 41. P. 3946–3956. https://doi.org/10.1007/s12598-022-02070-6
- Lyu Y., Wu X., Wang K., Feng Z., Cheng T., Liu Y., Wang M., Chen R., Xu L., Zhou J., Lu Y., Guo B. // Adv. Energy Mater. 2021. V. 11. № 2. P. 2000982. https://doi.org/10.1002/aenm.202000982
- Malik M., Chan K.H., Azimi G. // Mater. Today Energy. 2022. V. 28. 101066. https://doi.org/10.1016/j.mtener.2022.101066
- Li T., Yuan X.-Z., Zhang L., Song D., Shi K., Bock C. // Electrochem. Energ. Rev. 2020. V. 3. P. 43–80. https://doi.org/10.1007/s41918-019-00053-3
- Tian J., Xiong R., Shen W., Lu J. // Appl. Energy. 2021. V. 291. P. 116812. https://doi.org/10.1016/j.apenergy.2021.116812
- Xin Y.-M., Xu H.-Y., Ruan J.-H., Li D.-C., Wang A.-G., Sun D.-S. // Int. J. Electrochem. Sci. 2021. V. 16. № 6. P. 210655. https://doi.org/10.20964/2021.06.33
- Zhang S.S., Xu K., Jow T.R. // J. Power Sources. 2006. V. 160. № 2. P. 1349–1354. https://doi.org/10.1016/j.jpowsour.2006.02.087
- Zou Y., Zhang J., Lin J., Wu D.-Y., Yang Y., Zheng J. // J. Power Sources. 2022. V. 524. P. 231049. https://doi.org/10.1016/j.jpowsour.2022.231049
- Neskoromnaya E.A., Babkin A.V., Zakharchenko E.A., Morozov Yu.G., Kabachkov E.N., Shulga Yu.M. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 818–825. https://doi.org/10.1134/S1990793123040139
- Arshad F., Lin J., Manukar N., Fan E., Ahmad A., Tariq M.-un-N., Wu F., Chen R., Li L. // Resour. Conserv. Recycl. 2022. V. 180. P. 106164. https://doi.org/10.1016/j.resconrec.2022.106164
- Sovacool B.K. // The Extractive Industries and Society. 2019. V. 6. № 3. P. 915–939. https://doi.org/10.1016/j.exis.2019.05.018
- Konar R., Maiti S., Shpingel N., Aurbach D. // Energy Stor. Mater. 2023. V. 63. P. 103001. https://doi.org/10.1016/j.ensm.2023.103001
- Zhang J.-N., Li Q., Ouyang C., Yu X., Ge M., Huang X., Hu E., Ma C., Li S., Xiao R., Yang W., Chu Y., Liu Y., Yu H., Yang X.-Q., Huang X., Chen L., Li H. // Nat. Energy. 2019. V. 4. P. 594–603. https://doi.org/10.1038/s41560-019-0409-z
- Chombo P.V., Laoonual Y. // J. Power Sources. 2020. V. 478. P. 228649. https://doi.org/10.1016/j.jpowsour.2020.228649
- Zhitao E., Guo H., Yan G., Wang J., Feng R., Wang Z., Li X. // J. Energy Chem. 2021. V. 55. P. 524–532. https://doi.org/10.1016/j.jechem.2020.06.071
- Lipson A.L., Durham J.L., LeResche M., Abu-Baker I., Murphy M.J., Fister T.T., Wang L., Zhou F., Liu L., Kim K., Johnson D. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 16. P. 18512–18518. https://doi.org/10.1021/acsami.0c01448
- Chen S., Gao Z., Sun T. // Energy Sci. Eng. 2021. V. 9. № 9. P. 1647–1672. https://doi.org/10.1002/ese3.895
- Samigullin R.R., Drozhzhin O.A., Antipov E.V. // ACS Appl. Energy Mater. 2022. V. 5. P. 14−19. https://doi.org/10.1021/acsaem.1c03151
- Ramasubramanian B., Sundarrajan S., Chellappan V., Reddy M.V., Ramakrishna S., Zaghib K. // Batteries. 2022. V. 8. P. 133. https://doi.org/10.3390/batteries8100133
- Geng J., Zhang S., Hu X., Ling W., Peng X., Zhong S., Liang F., Zou Z. // Ionics. 2022. V. 28. P. 4899–4922. https://doi.org/10.1007/s11581-022-04679-0
- Lin J., Sun Y.-H., Lin X. // Nano Energy. 2022. V. 91. P. 106655. https://doi.org/10.1016/j.nanoen.2021.106655
- Tian J., Xiong R., Shen W., Lu J. // Appl. Energy. 2021. V. 291. P. 116812. https://doi.org/10.1016/j.apenergy.2021.116812
- Li J., Yao W., Martin S., Vaknin D. // Solid State Ionics. 2008. V. 179. № 35–36. P. 2016–2019. https://doi.org/10.1016/j.ssi.2008.06.028
- Minakshi M. // Electrochim. Acta. 2010. V. 55. № 28. P. 9174–9178. https://doi.org/10.1016/j.electacta.2010.09.011
- Zhang H., Zou Z., Zhang S., Liu J., Zhong S. // Int. J. Electrochem. Science. 2020. V. 15. № 12. P. 12041–12067. https://doi.org/10.20964/2020.12.71
- Doeff M.M., Wilcox J.D., Kostecki R., Lau G. // J. Power Sources. 2006. V. 163. № 1. P. 180–184. https://doi.org/10.1016/j.jpowsour.2005.11.075
- Zhang W.-J. // J. Power Sources. 2011. V. 196. № 6. P. 2962–2970. https://doi.org/10.1016/j.jpowsour.2010.11.113
- Zhao N., Li Y., Zhao X., Zhi X., Liang G. // J. Alloys Compd. 2016. V. 683. P. 123–132. https://doi.org/10.1016/j.jallcom.2016.04.070
- Rigamonti M.G., Chavalle M., Li H., Antitomaso P., Hadidi L., Stucchi M., Galli F., Khan H., Dolle M., Boffito D.C., Patience G.S. // J. Power Sources. 2020. V. 462. P. 228103. https://doi.org/10.1016/j.jpowsour.2020.228103
- Wang X., Wen L., Zheng Y., Liu H., Liang G. // Ionics. 2019. V. 25. P. 4589–4596. https://doi.org/10.1007/s11581-019-03025-1
- Cao Z., Ma B., Wang C., Shi B., Chen Y. // Hydrometallurgy. 2022. V. 212. P. 105896. https://doi.org/10.1016/j.hydromet.2022.105896
- Lou W., Zhang W., Zhang Y., Zheng S., Sun P., Wang X., Qiao S., Li J., Zhang Y., Liu D., Wenzel M., Weigand J.J. // J. Alloys Compd. 2021. V. 856. P. 158148. https://doi.org/10.1016/j.jallcom.2020.158148
- Babkin A.V., Kubarkov A.V., Styuf E.A., Sergeyev V.G., Drozhzhin O.A., Antipov E.V. // Russ. Chem. Bull. 2024. V. 73. № 1. P. 14–32. https://doi.org/10.1007/s11172-024-4119-8
- Manna K., Srivastava S.K. // J. Phys. Chem. C. 2018. V. 122. № 34. P. 19913–19920. https://doi.org/10.1021/acs.jpcc.8b04813
- Zhang, Y., Liang, Q., Huang, C., Gao P., Zhang X., Yang X., Liu L., Wang X. // J. Solid State Electrochem. 2018. V. 22. P. 1995–2002. https://doi.org/10.1007/s10008-018-3905-3
- Zhou W., He W., Zhang X., Yan S., Sun X., Tian X., Han X. // Powder Technol. 2009. V. 194. № 1–2. P. 106–108. https://doi.org/10.1016/j.powtec.2009.03.034
- Wang M., Xue Y., Zhang K., Zhang Y. // Electrochim. Acta. 2011. V. 56. № 11. P. 4294–4298. https://doi.org/10.1016/j.electacta.2011.01.074
- Ming X.-l., Wang R., Li T., Wu X., Yuan L., Zhao Y. // ACS Omega. 2021. V. 6. № 29. P. 18957–18963. https://doi.org/10.1021/acsomega.1c02216
- Tao S., Li J., Wang L., Hu L., Zhou H. // Ionics. 2019. V. 25. P. 5643–5653. https://doi.org/10.1007/s11581-019-03070-w
- Zhu Y., Tang S., Shi H., Hu H. // Ceram. Int. 2014. V. 40. № 2. P. 2685–2690. https://doi.org/10.1016/j.ceramint.2013.10.055
- Gongyan W., Li L., Fang H. // Int. J. Electrochem. Sci. 2018. V. 13. P. 2498–2508. https://doi.org/10.20964/2018.03.72
- Babkin A.V., Kubarkov A.V., Drozhzhin O.A., Urvanov S.A., Filimonenkov I.S., Tkachev A.G., Mordkovich V.Z., Sergeyev V.G., Antipov E.V. // Dokl. Chem. 2023. V. 508. P. 1–9. https://doi.org/10.1134/S001250082360013X
- Wu Y.-J., Gu Y.-J., Chen Y.-B., Liu H.-Q., Liu C.-Q. // Int. J. Hydrog. Energy. 2018. V. 43. № 4. P. 2050–2056. https://doi.org/10.1016/j.ijhydene.2017.12.061
- Ju S., Liu T., Peng H., Li G., Chen K. // Mater. Lett. 2013. V. 93. P. 194–198. https://doi.org/10.1016/j.matlet.2012.11.083
- Guo Y., Jiang Y., Zhang Q., Wan D., Huang C. // J. Power Sources. 2021. V. 506. P. 230052. https://doi.org/10.1016/j.jpowsour.2021.230052
- Kubarkov A.V., Babkin A.V., Drozhzhin O.A., Stevenson K.J., Antipov E.V., Sergeyev V.G. // Nanomaterials. 2023. V. 13. P. 1771. https://doi.org/10.3390/nano13111771
- Song J., Shao G., Ma Z., Wang G., Yang J. // Electrochim. Acta. 2015. V. 178. P. 504–510. https://doi.org/10.1016/j.electacta.2015.08.053
- Liang J., Gan Y., Yao M., Li Y. // Int. J. Heat Mass Transfer. 2021. V. 165. Part A. P. 120615. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120615
- Cao H., Wen L., Guo Z., Piao N., Hu G., Wu M., Li F. // New Carbon Mater. 2022. V. 37. № 1. P. 46–58. https://doi.org/10.1016/S1872-5805(22)60584-5
- Leanza D., Vaz C.A.F., Novak P., Kazzi M.E. // Helv. Chim. Acta. 2021. V. 104. P. e2000183. https://doi.org/10.1002/hlca.202000183
- Chen M., Liu F.-M., Chen S.-S., Zhao Y.-J., Sun Y., Li C.-S., Yuan Z.-Y., Qian X., Wan R. // Carbon. 2023. V. 203. P. 661–670. https://doi.org/10.1016/j.carbon.2022.12.015
- Dong G.-H., Mao Y.-Q., Li Y.-Q., Huang P., Fu S.-Y. // Electrochim. Acta. 2022. V. 420. P. 140464. https://doi.org/10.1016/j.electacta.2022.140464
- Al-Samet M.A.M.M., Burgaz E. // J. Alloys Compd. 2023. V. 947. P. 169680. https://doi.org/10.1016/j.jallcom.2023.169680
- Wang B., Liu T., Liu A., Liu G., Wang L., Gao T., Wang D., Zhao X.S. // Adv. Energy Mater. 2016. V. 6. P. 1600426. https://doi.org/10.1002/aenm.201600426
- Liu Z., Zhang R., Xu F., Gao Y., Zhao J. // J. Solid State Electrochem. 2022. V. 26. P. 1655–1665. https://doi.org/10.1007/s10008-022-05198-8
- Stenina I.A., Minakova P.V., Kulova T.L., Desyatov A.V., Yaroslavtsev A.B. // Inorg. Mater. 2021. V. 57. P. 620–628. https://doi.org/10.1134/S0020168521060108
- Tu X., Zhou Y., Song Y. // Appl. Surf. Sci. 2017. V. 400. P. 329–338. https://doi.org/10.1016/j.apsusc.2016.12.220
- Gong C., Xue Z., Wang X., Zhou X.-P., Xie X.-L., Mai Y.-W. // J. Power Sources. 2014. V. 246. P. 260–268. https://doi.org/10.1016/j.jpowsour.2013.07.091
- Lei X., Zhang H., Chen Y., Wang W., Ye Y., Zheng C., Deng P., Shi Z. // J. Alloys Compd. 2015. V. 626. P. 280–286. https://doi.org/10.1016/j.jallcom.2014.09.169
- Wu R., Xia G., Shen S., Zhu F., Jiang F., Zhang J. // Electrochim. Acta. 2015. V. 153. P. 334–342. https://doi.org/10.1016/j.electacta.2014.12.028
Қосымша файлдар
