Синтез сферических микрочастиц LiFePO₄ с инкапсулированными углеродными нанотрубками для высокомощных литий-ионных аккумуляторов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Феррофосфат лития – LiFePO₄ (LFP) – является одним из наиболее изученных и используемых на практике катодных материалов для литий-ионных аккумуляторов. Одним из основных недостатков LFP является низкая электронная проводимость. В настоящей работе предлагается эффективный подход к решению обозначенной проблемы, основанный на инкапсуляции углеродных нанотрубок (SWSNT) в объеме сферических частиц LFP. Инкапсулирование SWCNT в структуру фосфата железа в процессе осаждения – это простой в реализации подход к созданию модифицированных катодов на основе LFP. Электроды на основе полученных материалов демонстрируют более привлекательные электрохимические характеристики, чем на основе LFP: повышенную удельную емкость (62 и 92 мАч г⁻¹ при плотности тока 20С для LFP и LFP/SWCNT соответственно), стабильность циклических характеристик (сохранение емкости 98% после 100 циклов заряда/разряда для LFP/SWCNT и 96.5% для LFP), а также пониженное сопротивление переносу заряда. Улучшенные качества таких модифицированных катодов предполагают расширение возможностей их практического применения в высокомощных литий-ионных аккумуляторах.

Полный текст

Доступ закрыт

Об авторах

А. В. Бабкин

Московский государственный университет имени М.В.Ломоносова

Автор, ответственный за переписку.
Email: A.V.Babkin93@yandex.ru

химический факультет

Россия, 119991 Москва

О. А. Дрожжин

Московский государственный университет имени М.В.Ломоносова

Email: A.V.Babkin93@yandex.ru

химический факультет

Россия, 119991 Москва

А. В. Кубарьков

Московский государственный университет имени М.В.Ломоносова

Email: A.V.Babkin93@yandex.ru

химический факультет

Россия, 119991 Москва

Е. В. Антипов

Московский государственный университет имени М.В.Ломоносова; Сколковский институт науки и технологий

Email: A.V.Babkin93@yandex.ru

член-корреспондент РАН, химический факультет

Россия, 119991 Москва; 121205 Москва

В. Г. Сергеев

Московский государственный университет имени М.В.Ломоносова

Email: A.V.Babkin93@yandex.ru

химический факультет

Россия, 119991 Москва

Список литературы

  1. Deng D. // Energy Science & Engineering. 2015. V. 3. № 5. P. 385–418. https://doi.org/10.1002/ese3.95
  2. Li J., Du Z., Ruther R.E. An S.J., David L.A., Hays K., Wood M., Phillip D.N., Sheng Y., Mao C., Kalnaus S., Daniel C., Wood III D.L. // JOM. 2017. V. 69. P. 1484–1496. https://doi.org/10.1007/s11837-017-2404-9
  3. Miao Y., Hynan P., von Jouanne A., Yokochi A. // Energies. 2019. V. 12. № 6. P. 1074–1094. https://doi.org/10.3390/en12061074
  4. Camargos P.H., Pedro dos Santos H.J., dos Santos I.R., Ribeiro G.S., Caetano R.C. // Int. J. Energy Res. 2022. V. 46. № 13. P. 19258–19268. https://doi.org/10.1002/er.7993
  5. Nitta N., Wu F., Lee J.T., Yushin G. // Mater. Today. 2015. V. 18. № 5. P. 252–264. https://doi.org/10.1016/j.mattod.2014.10.040
  6. Mohamed N., Allam N.K. // RSC Adv. 2020. V. 10. № 37. P. 21662–21685. https://doi.org/10.1039/D0RA03314F
  7. Wang Y., Xu C., Tian X., Wang S., Zhao Y. // Chin. J. Struct. Chem. 2023. V. 42. № 10. P. 100167. https://doi.org/10.1016/j.cjsc.2023.100167
  8. Murdock B.E., Toghill K.E., Tapia‐Ruiz N. // Adv. Energy Mater. 2021. V. 11. № 39. P. 2102028. https://doi.org/10.1002/aenm.202102028
  9. Guan P., Zhou L., Yu Z., Sun Y., Liu Y., Wu F., Jiang Y., Chu D. // J. Energy Chem. 2020. V. 43. P. 220–235. https://doi.org/10.1016/j.jechem.2019.08.022
  10. Mukhopadhyay A., Jangid M.K. // Science. 2018. V. 359. № 6383. P. 1463–1463. https://doi.org/10.1126/science.aat245
  11. Van Noorden R. // Nature. 2014. V. 507. P. 26–28. https://doi.org/10.1038/507026a
  12. Jie Y., Ren X., Cao R., Cai W., Jiao S. // Adv. Funct. Mater. 2020. V. 30. № 25. P. 1910777. https://doi.org/10.1002/adfm.201910777
  13. Pender P.J., Jha G., Youn D.H., Ziegler J.M., Andoni I., Choi E.J., Heller A., Dunn B.S., Weiss P.S., Pennere R.M., Mullins B.C. // ACS Nano. 2020. V. 14. № 2. P. 1243–1295. https://doi.org/10.1021/acsnano.9b04365
  14. Zhang J.-C., Liu Z.-D., Zeng C.-H., Luo J.-W., Deng Y.-D., Cui X.-Y., Chen Y.-N. // Rare Met. 2022. V. 41. P. 3946–3956. https://doi.org/10.1007/s12598-022-02070-6
  15. Lyu Y., Wu X., Wang K., Feng Z., Cheng T., Liu Y., Wang M., Chen R., Xu L., Zhou J., Lu Y., Guo B. // Adv. Energy Mater. 2021. V. 11. № 2. P. 2000982. https://doi.org/10.1002/aenm.202000982
  16. Malik M., Chan K.H., Azimi G. // Mater. Today Energy. 2022. V. 28. 101066. https://doi.org/10.1016/j.mtener.2022.101066
  17. Li T., Yuan X.-Z., Zhang L., Song D., Shi K., Bock C. // Electrochem. Energ. Rev. 2020. V. 3. P. 43–80. https://doi.org/10.1007/s41918-019-00053-3
  18. Tian J., Xiong R., Shen W., Lu J. // Appl. Energy. 2021. V. 291. P. 116812. https://doi.org/10.1016/j.apenergy.2021.116812
  19. Xin Y.-M., Xu H.-Y., Ruan J.-H., Li D.-C., Wang A.-G., Sun D.-S. // Int. J. Electrochem. Sci. 2021. V. 16. № 6. P. 210655. https://doi.org/10.20964/2021.06.33
  20. Zhang S.S., Xu K., Jow T.R. // J. Power Sources. 2006. V. 160. № 2. P. 1349–1354. https://doi.org/10.1016/j.jpowsour.2006.02.087
  21. Zou Y., Zhang J., Lin J., Wu D.-Y., Yang Y., Zheng J. // J. Power Sources. 2022. V. 524. P. 231049. https://doi.org/10.1016/j.jpowsour.2022.231049
  22. Neskoromnaya E.A., Babkin A.V., Zakharchenko E.A., Morozov Yu.G., Kabachkov E.N., Shulga Yu.M. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 818–825. https://doi.org/10.1134/S1990793123040139
  23. Arshad F., Lin J., Manukar N., Fan E., Ahmad A., Tariq M.-un-N., Wu F., Chen R., Li L. // Resour. Conserv. Recycl. 2022. V. 180. P. 106164. https://doi.org/10.1016/j.resconrec.2022.106164
  24. Sovacool B.K. // The Extractive Industries and Society. 2019. V. 6. № 3. P. 915–939. https://doi.org/10.1016/j.exis.2019.05.018
  25. Konar R., Maiti S., Shpingel N., Aurbach D. // Energy Stor. Mater. 2023. V. 63. P. 103001. https://doi.org/10.1016/j.ensm.2023.103001
  26. Zhang J.-N., Li Q., Ouyang C., Yu X., Ge M., Huang X., Hu E., Ma C., Li S., Xiao R., Yang W., Chu Y., Liu Y., Yu H., Yang X.-Q., Huang X., Chen L., Li H. // Nat. Energy. 2019. V. 4. P. 594–603. https://doi.org/10.1038/s41560-019-0409-z
  27. Chombo P.V., Laoonual Y. // J. Power Sources. 2020. V. 478. P. 228649. https://doi.org/10.1016/j.jpowsour.2020.228649
  28. Zhitao E., Guo H., Yan G., Wang J., Feng R., Wang Z., Li X. // J. Energy Chem. 2021. V. 55. P. 524–532. https://doi.org/10.1016/j.jechem.2020.06.071
  29. Lipson A.L., Durham J.L., LeResche M., Abu-Baker I., Murphy M.J., Fister T.T., Wang L., Zhou F., Liu L., Kim K., Johnson D. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 16. P. 18512–18518. https://doi.org/10.1021/acsami.0c01448
  30. Chen S., Gao Z., Sun T. // Energy Sci. Eng. 2021. V. 9. № 9. P. 1647–1672. https://doi.org/10.1002/ese3.895
  31. Samigullin R.R., Drozhzhin O.A., Antipov E.V. // ACS Appl. Energy Mater. 2022. V. 5. P. 14−19. https://doi.org/10.1021/acsaem.1c03151
  32. Ramasubramanian B., Sundarrajan S., Chellappan V., Reddy M.V., Ramakrishna S., Zaghib K. // Batteries. 2022. V. 8. P. 133. https://doi.org/10.3390/batteries8100133
  33. Geng J., Zhang S., Hu X., Ling W., Peng X., Zhong S., Liang F., Zou Z. // Ionics. 2022. V. 28. P. 4899–4922. https://doi.org/10.1007/s11581-022-04679-0
  34. Lin J., Sun Y.-H., Lin X. // Nano Energy. 2022. V. 91. P. 106655. https://doi.org/10.1016/j.nanoen.2021.106655
  35. Tian J., Xiong R., Shen W., Lu J. // Appl. Energy. 2021. V. 291. P. 116812. https://doi.org/10.1016/j.apenergy.2021.116812
  36. Li J., Yao W., Martin S., Vaknin D. // Solid State Ionics. 2008. V. 179. № 35–36. P. 2016–2019. https://doi.org/10.1016/j.ssi.2008.06.028
  37. Minakshi M. // Electrochim. Acta. 2010. V. 55. № 28. P. 9174–9178. https://doi.org/10.1016/j.electacta.2010.09.011
  38. Zhang H., Zou Z., Zhang S., Liu J., Zhong S. // Int. J. Electrochem. Science. 2020. V. 15. № 12. P. 12041–12067. https://doi.org/10.20964/2020.12.71
  39. Doeff M.M., Wilcox J.D., Kostecki R., Lau G. // J. Power Sources. 2006. V. 163. № 1. P. 180–184. https://doi.org/10.1016/j.jpowsour.2005.11.075
  40. Zhang W.-J. // J. Power Sources. 2011. V. 196. № 6. P. 2962–2970. https://doi.org/10.1016/j.jpowsour.2010.11.113
  41. Zhao N., Li Y., Zhao X., Zhi X., Liang G. // J. Alloys Compd. 2016. V. 683. P. 123–132. https://doi.org/10.1016/j.jallcom.2016.04.070
  42. Rigamonti M.G., Chavalle M., Li H., Antitomaso P., Hadidi L., Stucchi M., Galli F., Khan H., Dolle M., Boffito D.C., Patience G.S. // J. Power Sources. 2020. V. 462. P. 228103. https://doi.org/10.1016/j.jpowsour.2020.228103
  43. Wang X., Wen L., Zheng Y., Liu H., Liang G. // Ionics. 2019. V. 25. P. 4589–4596. https://doi.org/10.1007/s11581-019-03025-1
  44. Cao Z., Ma B., Wang C., Shi B., Chen Y. // Hydrometallurgy. 2022. V. 212. P. 105896. https://doi.org/10.1016/j.hydromet.2022.105896
  45. Lou W., Zhang W., Zhang Y., Zheng S., Sun P., Wang X., Qiao S., Li J., Zhang Y., Liu D., Wenzel M., Weigand J.J. // J. Alloys Compd. 2021. V. 856. P. 158148. https://doi.org/10.1016/j.jallcom.2020.158148
  46. Babkin A.V., Kubarkov A.V., Styuf E.A., Sergeyev V.G., Drozhzhin O.A., Antipov E.V. // Russ. Chem. Bull. 2024. V. 73. № 1. P. 14–32. https://doi.org/10.1007/s11172-024-4119-8
  47. Manna K., Srivastava S.K. // J. Phys. Chem. C. 2018. V. 122. № 34. P. 19913–19920. https://doi.org/10.1021/acs.jpcc.8b04813
  48. Zhang, Y., Liang, Q., Huang, C., Gao P., Zhang X., Yang X., Liu L., Wang X. // J. Solid State Electrochem. 2018. V. 22. P. 1995–2002. https://doi.org/10.1007/s10008-018-3905-3
  49. Zhou W., He W., Zhang X., Yan S., Sun X., Tian X., Han X. // Powder Technol. 2009. V. 194. № 1–2. P. 106–108. https://doi.org/10.1016/j.powtec.2009.03.034
  50. Wang M., Xue Y., Zhang K., Zhang Y. // Electrochim. Acta. 2011. V. 56. № 11. P. 4294–4298. https://doi.org/10.1016/j.electacta.2011.01.074
  51. Ming X.-l., Wang R., Li T., Wu X., Yuan L., Zhao Y. // ACS Omega. 2021. V. 6. № 29. P. 18957–18963. https://doi.org/10.1021/acsomega.1c02216
  52. Tao S., Li J., Wang L., Hu L., Zhou H. // Ionics. 2019. V. 25. P. 5643–5653. https://doi.org/10.1007/s11581-019-03070-w
  53. Zhu Y., Tang S., Shi H., Hu H. // Ceram. Int. 2014. V. 40. № 2. P. 2685–2690. https://doi.org/10.1016/j.ceramint.2013.10.055
  54. Gongyan W., Li L., Fang H. // Int. J. Electrochem. Sci. 2018. V. 13. P. 2498–2508. https://doi.org/10.20964/2018.03.72
  55. Babkin A.V., Kubarkov A.V., Drozhzhin O.A., Urvanov S.A., Filimonenkov I.S., Tkachev A.G., Mordkovich V.Z., Sergeyev V.G., Antipov E.V. // Dokl. Chem. 2023. V. 508. P. 1–9. https://doi.org/10.1134/S001250082360013X
  56. Wu Y.-J., Gu Y.-J., Chen Y.-B., Liu H.-Q., Liu C.-Q. // Int. J. Hydrog. Energy. 2018. V. 43. № 4. P. 2050–2056. https://doi.org/10.1016/j.ijhydene.2017.12.061
  57. Ju S., Liu T., Peng H., Li G., Chen K. // Mater. Lett. 2013. V. 93. P. 194–198. https://doi.org/10.1016/j.matlet.2012.11.083
  58. Guo Y., Jiang Y., Zhang Q., Wan D., Huang C. // J. Power Sources. 2021. V. 506. P. 230052. https://doi.org/10.1016/j.jpowsour.2021.230052
  59. Kubarkov A.V., Babkin A.V., Drozhzhin O.A., Stevenson K.J., Antipov E.V., Sergeyev V.G. // Nanomaterials. 2023. V. 13. P. 1771. https://doi.org/10.3390/nano13111771
  60. Song J., Shao G., Ma Z., Wang G., Yang J. // Electrochim. Acta. 2015. V. 178. P. 504–510. https://doi.org/10.1016/j.electacta.2015.08.053
  61. Liang J., Gan Y., Yao M., Li Y. // Int. J. Heat Mass Transfer. 2021. V. 165. Part A. P. 120615. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120615
  62. Cao H., Wen L., Guo Z., Piao N., Hu G., Wu M., Li F. // New Carbon Mater. 2022. V. 37. № 1. P. 46–58. https://doi.org/10.1016/S1872-5805(22)60584-5
  63. Leanza D., Vaz C.A.F., Novak P., Kazzi M.E. // Helv. Chim. Acta. 2021. V. 104. P. e2000183. https://doi.org/10.1002/hlca.202000183
  64. Chen M., Liu F.-M., Chen S.-S., Zhao Y.-J., Sun Y., Li C.-S., Yuan Z.-Y., Qian X., Wan R. // Carbon. 2023. V. 203. P. 661–670. https://doi.org/10.1016/j.carbon.2022.12.015
  65. Dong G.-H., Mao Y.-Q., Li Y.-Q., Huang P., Fu S.-Y. // Electrochim. Acta. 2022. V. 420. P. 140464. https://doi.org/10.1016/j.electacta.2022.140464
  66. Al-Samet M.A.M.M., Burgaz E. // J. Alloys Compd. 2023. V. 947. P. 169680. https://doi.org/10.1016/j.jallcom.2023.169680
  67. Wang B., Liu T., Liu A., Liu G., Wang L., Gao T., Wang D., Zhao X.S. // Adv. Energy Mater. 2016. V. 6. P. 1600426. https://doi.org/10.1002/aenm.201600426
  68. Liu Z., Zhang R., Xu F., Gao Y., Zhao J. // J. Solid State Electrochem. 2022. V. 26. P. 1655–1665. https://doi.org/10.1007/s10008-022-05198-8
  69. Stenina I.A., Minakova P.V., Kulova T.L., Desyatov A.V., Yaroslavtsev A.B. // Inorg. Mater. 2021. V. 57. P. 620–628. https://doi.org/10.1134/S0020168521060108
  70. Tu X., Zhou Y., Song Y. // Appl. Surf. Sci. 2017. V. 400. P. 329–338. https://doi.org/10.1016/j.apsusc.2016.12.220
  71. Gong C., Xue Z., Wang X., Zhou X.-P., Xie X.-L., Mai Y.-W. // J. Power Sources. 2014. V. 246. P. 260–268. https://doi.org/10.1016/j.jpowsour.2013.07.091
  72. Lei X., Zhang H., Chen Y., Wang W., Ye Y., Zheng C., Deng P., Shi Z. // J. Alloys Compd. 2015. V. 626. P. 280–286. https://doi.org/10.1016/j.jallcom.2014.09.169
  73. Wu R., Xia G., Shen S., Zhu F., Jiang F., Zhang J. // Electrochim. Acta. 2015. V. 153. P. 334–342. https://doi.org/10.1016/j.electacta.2014.12.028

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема получения композиционного материала фосфат железа/углеродные нанотрубки методом осаждения.

Скачать (212KB)
3. Рис. 2. Рентгенограммы синтезированных прекурсоров FP и FP/SWCNT (а), СЭМ-изображение осажденного FP/SWCNT (б), ТГ/ДСК для образца FP/SWCNT (в), рентгенограммы FP и FP/SWCNT, отожженных при 600оС на воздухе (г) и СЭМ-изображение структуры используемых SWCNT (д).

Скачать (687KB)
4. Рис. 3. Изображения СЭМ: сферические частицы не отожженного LFP/SWCNT после распылительной сушки (а), сферические частицы LFP/SWCNT после отжига (б), вид синтезированной частицы LFP/SWCNT (в), идентификация на поверхности синтезированного LFP/SWCNT углеродных нанотрубок (г, д). Рентгенограмма синтезированного образца LFP/SWCNT (е).

5. Рис. 4. Удельные емкости разряда при различных плотностях тока для образца LFP/SWCNT и его аналога, не содержащего SWCNT в составе (а), качественное и количественное влияние плотности тока на разницу удельных емкостей разряда (б), гальваностатические зарядно/разрядные кривые для LFP/SWCNT (в) и LFP (г), увеличенные области гальваностатических кривых для образцов LFP/SWCNT (д) и LFP (е).

Скачать (582KB)
6. Рис. 5. Циклическая стабильность синтезированных материалов (скорость заряда/разряда 1С).

Скачать (221KB)

© Российская академия наук, 2024