Stabilizing Influence of Electron-Deficient Triazole Fragment on the Furan Heterocycle in Renewable Platform Chemicals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of an aromatic triazole ring conjugated with a furan heterocycle on the stability of furan under various reaction conditions was studied, and a significant reduction in the degree of degradation of the electron-rich furan core and hydrolysis of the ester group under the action of a model acid and base in various organic solvents was shown. The lowest degree of degradation and hydrolysis of the triazole-substituted 2-furoic acid ester was achieved in dioxane, as well as in polar aprotic solvents (DMSO and DMF). It was shown that under the same conditions, a significant tarring and hydrolysis of the furan ester, which does not contain a conjugated triazole fragment, occurs.

Sobre autores

D. Kolykhalov

Tula State University

Email: karbo@ioc.ac.ru
Rússia, 300012 Tula

A. Golysheva

Tula State University

Email: karbo@ioc.ac.ru
Rússia, 300012 Tula

B. Karlinskii

Tula State University; N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences

Autor responsável pela correspondência
Email: karbo@ioc.ac.ru
Rússia, 300012 Tula; 119991 Moscow

Bibliografia

  1. Halkos G.E., Gkampoura E.-C. // Energies. 2020. V. 13. № 11. P. 2906. https://doi.org/10.3390/en13112906
  2. Seitkalieva M.M., Vavina A.V., Strukova E.N. // Dokl. Chem. 2023. V. 513. № 2. P. 380–388. https://doi.org/10.1134/s0012500823600967
  3. Redina E.A., Vikanova K.V., Tkachenko O.P., Kapustin G.I., Kustov L.M. // Dokl. Chem. 2022. V. 507. № 2. P. 261–269. https://doi.org/10.1134/s0012500822600158
  4. Zlotin S.G., Egorova K.S., Ananikov V.P., Akulov A.A., Varaksin M.V., Chupakhin O.N., Charushin V.N., Bryliakov K.P., Averin A.D., Beletskaya I.P., Dolengovski E.L., Budnikova Y.H., Sinyashin O.G., Gafurov Z.N., Kantyukov A.O., Yakhvarov D.G., Aksenov A.V., Elinson M.N., Nenajdenko V.G., Chibiryaev A.M., Nesterov N.S., Kozlova E.A., Martyanov O.N., Balova I.A., Sorokoumov V.N., Guk D.A., Beloglazkina E.K., Lemenovskii D.A., Chukicheva I.Y., Frolova L.L., Izmest’ev E.S., Dvornikova I.A., Popov A.V., Kutchin A.V., Borisova D.M., Kalinina A.A., Muzafarov A.M., Kuchurov I.V., Maximov A.L., Zolotukhina A.V. // Russ. Chem. Rev. 2023. V. 92. № 12. RCR5104. https://doi.org/10.59761/rcr5104
  5. Bozell J.J., Petersen G.R. // Green Chem. 2010. V. 12. № 4. P. 539–554. https://doi.org/10.1039/b922014c
  6. Bielski R., Grynkiewicz G. // Green Chem. 2021. V. 23. № 19. P. 7458–7487. https://doi.org/10.1039/d1gc02402g
  7. Espro C., Paone E., Mauriello F., Gotti R., Uliassi E., Bolognesi M.L., Rodríguez-Padrón D., Luque R. // Chem. Soc. Rev. 2021. V. 50. № 20. P. 11191–11207. https://doi.org/10.1039/d1cs00524c
  8. Gandini A., Lacerda T.M. // Macromol. Mater. Eng. 2022. V. 307. № 6. P. 2100902. https://doi.org/10.1002/mame.202100902
  9. Karlinskii B.Ya., Ananikov V.P. // Chem. Soc. Rev. 2023. V. 52. № 2. P. 836–862. https://doi.org/10.1039/d2cs00773h
  10. Jaswal A., Singh P.P., Mondal T. // Green Chem. 2022. V. 24. № 2. P. 510–551. https://doi.org/10.1039/d1gc03278j
  11. Najmidin K., Kerim A., Abdirishit P., Kalam H., Tawar T. // J. Mol. Model. 2013. V. 19. № 9. P. 3529–3535. https://doi.org/10.1007/s00894-013-1877-x
  12. Kucherov F.A., Romashov L.V., Galkin K.I., Ananikov V.P. // ACS Sustainable Chem. Eng. 2018. V. 6. № 7. P. 8064–8092. https://doi.org/10.1021/acssuschemeng.8b00971
  13. Rani M.A.A.B.A., Karim N.A., Kamarudin S.K. // Int. J. Energy Res. 2022. V. 46. № 13. P. 18996–19050. https://doi.org/10.1002/er.8545
  14. Averochkin G.M., Gordeev E.G., Skorobogatko M.K., Kucherov F.A., Ananikov V.P. // ChemSusChem 2021. V. 14. № 15. P. 3110–3123. https://doi.org/10.1002/cssc.202100818
  15. Shepelenko K.E., Nikolaeva K.A., Gnatiuk I.G., Garanzha O.G., Alexandrov A.A., Minyaev M.E., Chernyshev V.M. // Mendeleev Commun. 2022. V. 32. № 4. P. 485–487. https://doi.org/10.1016/j.mencom.2022.07.018
  16. Shepelenko K.E., Soliev S.B., Nikolaeva K.A., Minyaev M.E., Chernyshev V.M. // Russ. Chem. Bull. 2023. V. 72. № 8. P. 1746–1752. https://doi.org/10.1007/s11172-023-3956-1
  17. John I.G., Radom L. // J. Am. Chem. Soc. 1978. V. 100. № 13. P. 3981–3991. https://doi.org/10.1021/ja00481a001
  18. Cao H., Rupar P.A. // Chem. Eur. J. 2017. V. 23. № 59. P. 14670–14675. https://doi.org/10.1002/chem.201703355
  19. Karlinskii B.Ya., Romashov L.V., Galkin K.I., Kislitsyn P.G., Ananikov V.P. // Synthesis. 2019. V. 51. № 05. P. 1235–1242. https://doi.org/10.1055/s-0037-1610414
  20. Savelyeva N.Yu., Shpirt A.M., Orlova A.V., Chizhov A.O., Kononov L.O. // Russ. Chem. Bull. 2022. V. 71. № 8. P. 1784–1793. https://doi.org/10.1007/s11172-022-3590-3
  21. Johansson G., Sundquist S., Nordvall G., Nilsson B.M., Brisander M., Nilvebrant L., Hacksell U. // J. Med. Chem. 1997. V. 40. № 23. P. 3804–3819. https://doi.org/10.1021/jm970346t
  22. Hashmi A., Enns E., Frost T., Schäfer S., Frey W., Rominger F. // Synthesis. 2008. V. 2008. № 20. P. 3360–3360. https://doi.org/10.1055/s-0028-1083144
  23. Cui X., Xu X., Wojtas L., Kim M.M., Zhang X.P. // J. Am. Chem. Soc. 2012. V. 134. № 49. P. 19981–19984. https://doi.org/10.1021/ja309446n
  24. Fakhrutdinov A.N., Karlinskii B.Ya., Minyaev M.E., Ananikov V.P. // J. Org. Chem. 2021. V. 86. № 17. P. 11456–11463. https://doi.org/10.1021/acs.joc.1c00943
  25. Stini N.A., Gkizis P.L., Kokotos C.G. // Green Chem. 2022. V. 24. № 17. P. 6435–6449. https://doi.org/10.1039/d2gc02332f
  26. Warlin N., Garcia Gonzalez M.N., Mankar S., Valsange N.G., Sayed M., Pyo S.-H., Rehnberg N., Lundmark S., Hatti-Kaul R., Jannasch P., Zhang B. // Green Chem. 2019. V. 21. № 24. P. 6667–6684. https://doi.org/10.1039/c9gc03055g
  27. Hoang T.M.C., van Eck E.R.H., Bula W.P., Gardeniers J.G.E., Lefferts L., Seshan K. // Green Chem. 2015. V. 17. № 2. P. 959–972. https://doi.org/10.1039/c4gc01324g
  28. Tsilomelekis G., Orella M.J., Lin Z., Cheng Z., Zheng W., Nikolakis V., Vlachos D.G. // Green Chem. 2016. V. 18. № 7. P. 1983–1993. https://doi.org/10.1039/c5gc01938a
  29. Shen H., Shan H., Liu L. // ChemSusChem. 2020. V. 13. № 3. P. 513–519. https://doi.org/10.1002/cssc.201902799
  30. Hu X., Kadarwati S., Wang S., Song Y., Hasan M.D.M., Li C.-Z. // Fuel Process. Technol. 2015. V. 137. P. 212–219. https://doi.org/10.1016/j.fuproc.2015.04.024
  31. Motornov V., Pohl R., Klepetářová B., Beier P. // Chem. Commun. 2023. V. 59. № 61. P. 9364–9367. https://doi.org/10.1039/d3cc00987d
  32. Bauerová I., Ludwig M. // Collect. Czech. Chem. Commun. 2000. V. 65. № 11. P. 1777–1790. https://doi.org/10.1135/cccc20001777
  33. Nummert V., Piirsalu M., Mäemets V., Koppel I. // Collect. Czech. Chem. Commun. 2006. V. 71. № 1. P. 107–128. https://doi.org/10.1135/cccc20060107
  34. Mangione M.I., Spanevello R.A., Anzardi M.B. // RSC Adv. 2017. V. 7. № 75. P. 47681–47688. https://doi.org/10.1039/c7ra09558a
  35. Kozlov K.S., Romashov L.V., Ananikov V.P. // Green Chem. 2019. V. 21. № 12. P. 3464–3468. https://doi.org/10.1039/c9gc00840c
  36. Guan Y., Buivydas T., Lalisse R.F., Ali R., Hadad C.M., Mattson A.E. // Synthesis. 2022. V. 54. № 19. P. 4210–4219. https://doi.org/10.1055/a-1811-8075

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024