Changes in the optical properties of coatings based on hollow ZnO/SiO2 particles under electron irradiation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A comparative analysis of the diffuse reflectance spectra and their changes after irradiation with electrons with an energy of 30 keV of coatings based on polymethylphenylsiloxane resin and pigment powders of two-layer hollow ZnO/SiO2 particles was carried out. The analysis was carried out in situ in the range 250–2500 nm. The samples were irradiated in a “Spectrum” space simulator. The radiation resistance of the studied coatings based on two-layer hollow ZnO/SiO2 particles was estimated relative to coatings based on ZnO polycrystals by analyzing the difference diffuse reflectance spectra obtained by subtracting the spectra after irradiation from the spectra of unirradiated samples. It has been found that the intensity of the induced absorption bands in coatings based on hollow ZnO/SiO2 particles is less than in coatings based on ZnO microparticles, and the radiation resistance when estimating changes in the integral absorption coefficient of solar radiation (ΔαS) is twice as high. The increase in radiation resistance is probably determined by the different nature of defect accumulation: in the case of solid microparticles, defects can accumulate inside grains; in hollow particles, the accumulation of defects can occur only within the thin shell of the sphere.

Texto integral

Acesso é fechado

Sobre autores

A. Dudin

Аmur State University

Email: viktoriay-09@mail.ru
Rússia, 675027, Blagoveshchensk

V. Yurina

Аmur State University

Autor responsável pela correspondência
Email: viktoriay-09@mail.ru
Rússia, 675027, Blagoveshchensk

V. Neshchimenko

Аmur State University

Email: viktoriay-09@mail.ru
Rússia, 675027, Blagoveshchensk

M. Mikhailov

Аmur State University; Tomsk State University of Control Systems and Radioelectronics

Email: viktoriay-09@mail.ru
Rússia, 675027, Blagoveshchensk; 634050, Tomsk

S. Yuriev

Аmur State University; Tomsk State University of Control Systems and Radioelectronics

Email: viktoriay-09@mail.ru
Rússia, 675027, Blagoveshchensk; 634050, Tomsk

A. Lapin

Tomsk State University of Control Systems and Radioelectronics

Email: viktoriay-09@mail.ru
Rússia, 634050, Tomsk

Bibliografia

  1. Wang Y., Sunkara B., Zhan J., He J., Miao L., McPherson G.L., John V.T., Spinu L. // Langmuir. 2012. V. 28. P. 13783. https://www.doi.org/10.1021/la302841c
  2. Yan Y., Li A., Lu C., Zhai T., Lu S., Li W., Zhou W. // Chem. Engin. J. 2020. V. 396. P. 125316. https://www.doi.org/10.1016/j.cej.2020.125316
  3. Li C., Liang Z., Xiao H., Wu Y., Liu Y. // Mater. Lett. 2010. V. 64. № 18. P. 1972. https://www.doi.org/0.1016/j.matlet.2010.06.027
  4. Rasmidi R., Duinong M., Chee F.P. // Radiat. Phys. Chem. 2021. V. 184. P. 109455. https://www.doi.org/10.1016/j.radphyschem.2021.109455
  5. Li C., Mikhailov M.M., Neshchimenko V.V. // Nucl. Instrum. Methods Phys. Res. B. 2014. V. 319. P. 123. https://www.doi.org/10.1016/j.nimb.2013.11.007
  6. Belov A., Mikhaylov A., Korolev D., Guseinov D., Gryaznov E., Okulich E., Sergeev V., Antonov I., Kasatkin A., Gorshkov O., Tetelbaum D., Kozlovski V. // Nucl. Instrum. Methods Phys. Res. B. 2016. V. 379. P. 13. https://www.doi.org/10.1016/j.nimb.2016.02.054
  7. Bhatia S., Verma N. // Mater. Res. Bull. 2017. V. 95. P. 468. https://www.doi.org/10.1016/j.materresbull.2017.08.019
  8. Singh V.P., Das D., Rath C. // Mater. Res.h Bull. 2013. V. 48. № 2. P. 682. https://www.doi.org/10.1016/j.materresbull.2012.11.026
  9. Wang Z.G., Zu X.T., Zhu S., Wang L.M. // Physica E. 2006. V. 35. № 1. P. 199. https://www.doi.org/10.1016/j.physe.2006.07.022
  10. Spallino L., Spera M., Vaccaro L., Agnello S., Gelar- di F.M., Zatsepin A.F., Cannas M. // Appl. Surf. Sci. 2017. V. 420. P. 94. https://www.doi.org/10.1016/j.apsusc.2017.05.082
  11. Amosov A.V., Dzyuba V.P., Kulchin Yu.N., Storozhen- ko D.V. // Phys. Procedia. 2017. V. 86. P. 61. https://www.doi.org/10.1016/j.phpro.2017.01.021
  12. Singh S.K., Kumar A., Singh S., Kumar A., Jain A. // Silicon. 2021. V. 38. № 5. P. 2861. https://www.doi.org/10.1016/j.matpr.2020.09.137
  13. Chen J., Yu Y., Xiu H., Feng A., Mi L., Yu Y.// Ceram. Int. 2022. V. 48. № 19. P. 28006. https://www.doi.org/10.1016/j.ceramint.2021.09.155
  14. Neshchimenko V.V., Li C., Mikhailov M.M. // Dyes and Pigments. 2017. V. 145. P. 354. https://www.doi.org/10.1016/j.dyepig.2017.03.058
  15. Neshchimenko V.V., Li C., Mikhailov M.M., Lv J. // Nanoscale. 2018. V. 10. № 47. P. 22335. https://www.doi.org/10.1039/C8NR04455D
  16. Mikhailov M.M., Yuryev S.A., Lapin A.N., Goronch- ko V.A. // Ceram. Int. 2023. V. 49. № 12. P. 20817. https://www.doi.org/10.1016/j.ceramint.2023.03.214
  17. Дудин А.Н., Нещименко В.В., Ли Ч. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 4. С. 70. https://www.doi.org/10.31857/S1028096022040069
  18. Kositsyn L.G., Mikhailov M.M., Kuznetsov N.Y., Dvoretskii M.I. // Instrum. Exp. Tech. 1985. V. 28. P. 929.
  19. Johnson F.S. // J. Meteorological. 1954. V. 11. № 6. P. 431.
  20. ASTM E490-00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. 2019.
  21. ASTM E903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. 2005.
  22. Agostinelli S., Allison J., Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G., Behner F., Bellagamba L., Boudreau J., Broglia L., Brunengo A., Burkhardt H., Chauvie S., Chuma J., Chytracek R., Cooperman G. // Nucl. Instrum. Methods Phys. Res. A. 2003. V. 506. P. 250. https://www.doi.org/10.1016/S0168-9002(03)01368-8

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffuse reflectance spectra of coatings based on organosilicon varnish and hollow two-layer ZnO/SiO2 particles (1), bulk ZnO microparticles (2), without pigments (3).

Baixar (77KB)
3. Fig. 2. Difference spectra of diffuse reflectance obtained by subtracting the spectra of organosilicon varnish from the spectra of hollow bilayer ZnO/SiO2 particles (1) and bulk ZnO microparticles (2).

Baixar (67KB)
4. Fig. 3. Difference spectra of diffuse reflectance of coatings based on bulk ZnO microparticles after irradiation with accelerated electrons with an energy of 30 keV, fluence: 5 × 1015 (1); 1 × 1016 (2); 2 × 1016 (3); 3 × 1016 (4); 5 × 1016 (5); 7 × 1016 cm–2 (6).

Baixar (96KB)
5. Fig. 4. Difference spectra of diffuse reflectance of coatings based on hollow bilayer ZnO/SiO2 particles after irradiation with accelerated electrons with an energy of 30 keV, fluence: 5 × 1015 (1); 1 × 1016 (2); 2 × 1016 (3); 3 × 1016 (4); 5 × 1016 (5); 7 × 1016 cm–2 (6).

Baixar (87KB)
6. Fig. 5. Dependence of changes in the absorption coefficient ΔαS after irradiation with electrons with an energy of 30 keV (fluence up to 7 × 1016 cm–2) of coatings based on organosilicon varnish and hollow two-layer ZnO/SiO2 particles (1) and bulk ZnO microparticles (2).

Baixar (63KB)
7. Fig. 6. Simulation of the passage of an electron beam through a composite based on polymethylphenylsiloxane resin and bulk ZnO microparticles (a) and hollow ZnO/SiO2 microparticles (b).

Baixar (181KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024