Active and stable Ni/Al2O3–(Zr+Ce)O2 catalyst for syngas production via glycerol dry reforming
- 作者: Fionov Y.A.1, Semenova S.M.1, Khaibullin S.V.1, Fionova E.A.2, Bratchikova I.G.1, Kharlanov A.N.3, Zhukova A.I.1
-
隶属关系:
- Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
- MIREA – Russian Technological University
- Lomonosov Moscow State University, Faculty of Chemistry
- 期: 卷 66, 编号 2 (2025)
- 页面: 126-135
- 栏目: VIII Международная научная школа-конференция молодых ученых “Катализ: от науки к промышленности” (30 сентября–3 октября 2024 г., Томск)
- URL: https://ter-arkhiv.ru/0453-8811/article/view/689887
- DOI: https://doi.org/10.31857/S0453881125020068
- EDN: https://elibrary.ru/SKRQTA
- ID: 689887
如何引用文章
详细
A nickel-based catalyst supported on alumina-zirconia-ceria oxides was investigated to evaluate its performance in the dry reforming of glycerol with CO₂. The reaction was carried out at 700°C, atmospheric pressure and a glycerol/CO₂ molar ratio of 1. The catalyst showed stable operation for 7 h and achieved glycerol and CO₂ conversions of 60 and 47%, respectively, with H₂ and CO yields of 48 and 58%. Thermogravimetric analysis revealed the presence of carbon deposits, which, however, did not result in a significant loss of activity. These results highlight the potential of the synthesized catalyst for glycerol conversion for the production of syngas and hydrogen from renewable feedstock.
全文:

作者简介
Yu. Fionov
Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
编辑信件的主要联系方式.
Email: fionovyuri@gmail.com
Department of Physical and Colloid Chemistry
俄罗斯联邦, Miklukho-Maklaya St., 6, Moscow, 117198S. Semenova
Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: fionovyuri@gmail.com
Department of Physical and Colloid Chemistry
俄罗斯联邦, Miklukho-Maklaya St., 6, Moscow, 117198S. Khaibullin
Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: fionovyuri@gmail.com
Department of Physical and Colloid Chemistry
俄罗斯联邦, Miklukho-Maklaya St., 6, Moscow, 117198E. Fionova
MIREA – Russian Technological University
Email: fionovyuri@gmail.com
Department of Digital and Additive Technologies
俄罗斯联邦, prosp. Vernadskogo, 78, bldg. 4, Moscow, 119454I. Bratchikova
Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: fionovyuri@gmail.com
Department of Physical and Colloid Chemistry
俄罗斯联邦, Miklukho-Maklaya St., 6, Moscow, 117198A. Kharlanov
Lomonosov Moscow State University, Faculty of Chemistry
Email: fionovyuri@gmail.com
俄罗斯联邦, GSP-1, Leninskiye Gory, 1, bldg. 3, Moscow, 119991
A. Zhukova
Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: pylinina@list.ru
Department of Physical and Colloid Chemistry
俄罗斯联邦, Miklukho-Maklaya St., 6, Moscow, 117198参考
- Kolesárová N., Hutňan M., Bodík I., Špalková V. // BioMed Res. Int. 2011. V. 2011. 126798. https://doi.org/10.1155/2011/126798
- Cheng C.K., Lim R.H., Ubil A., Chin S.Y., Gimbun J. // Adv. Mater. Phys. Chem. 2012. V. 2. 24B043. https://doi.org/10.4236/ampc.2012.24B043
- Schwengber C.A., Alves H.J., Schaffner R.A., Alves da Silva F., Sequinel R., Rossato Bach V., Ferracin R.J. // Renew. Sustain. Energy Rev. 2016. V. 58. P. 259. https://doi.org/10.1016/j.rser.2015.12.279
- Sadykov V.A., Simonov M.N., Belpalko Y.N., Bobrova L.N., Eremeev N.F., Arapova M.V., Smal’ E.A., Mezentseva N.V., Pavlova S.N. // Kinet. Catal. 2019. Vol. 60. № 5. Р. 582. https://doi.org/10.1134/S0023158419050082
- Sabri F., Idem R., Ibrahim H. // Ind. Eng. Chem. Res. 2018. V. 57. P. 2486. https://doi.org/10.1021/acs.iecr.7b04582
- Pairojpiriyakul T., Kiatkittipong W., Assabumrungrat S., Croiset E. // Int. J. Hydrogen Energy. 2014. V. 39. P. 159. https://doi.org/10.1016/j.ijhydene.2013.09.148
- Mohd Arif N.N., Zainal Abidin S., Osazuwa O.U., Vo D.-V.N., Azizan M.T. // Int. J. Hydrogen Energy. 2019. V. 44. P. 20857. https://doi.org/10.1016/j.ijhydene.2018.06.084
- Kamonsuangkasem K., Therdthianwong S., Therdthianwong A. // Fuel Process. Technol. 2013. V. 106. P. 695. https://doi.org/10.1016/j.fuproc.2012.10.003
- Iriondo A., Cambra J.F., Barrio V.L., Guemez M.B., Arias P.L., Sanchez-Sanchez M.C., Navarro R.M., Fierro J.L.G. // Appl. Catal. B: Environ. 2011. V. 106. P. 83. https://doi.org/10.1016/j.apcatb.2011.05.009
- Tamošiūnas A., Gimžauskaitė D., Aikas M., Uscila R., Zakarauskas K. // Int. J. Hydrogen Energy. 2022. V. 47. P. 12219. https://doi.org/10.1016/j.ijhydene.2021.06.203
- Sahraei O.A.Z., Larachi F., Abatzoglou N., Iliuta M.C. // Appl. Catal. B: Environ. 2017. V. 219. P. 183. https://doi.org/10.1016/j.apcatb.2017.07.039
- Lee H.C., Siew K.W., Khan M.R., Chin S.Y., Cheng C.K. // J. Energy Chem. 2014. V. 23. P. 645. https://doi.org/10.1016/S2095-4956(14)60196-0
- Siew K.W., Lee H.C., Gimbun J., Cheng C.K. // J. Energy Chem. 2014. V. 23. P. 15. https://doi.org/10.1016/S2095-4956(14)60112-1
- Siew K.W., Lee H.C., Gimbun J., Chin S.Y., Khan M.R., Taufiq-Yap Y.H., Cheng C.K. // Renew. Energy. 2015. V. 74. P. 441. https://doi.org/10.1016/j.renene.2014.08.048
- Wang X., Li M., Wang M., Wang H., Li S., Wang S., Ma X. // Fuel. 2009. V. 88. P. 2148. https://doi.org/10.1016/j.fuel.2009.01.015
- Yu J., Odriozola J.A., Reina T.R. // Catalysts. 2019. V. 9. P. 1015. https://doi.org/10.3390/catal9121015
- Bychkov V.Y., Tulenin Y.P., Gorensberg A.Y., Korchak V.N. // Kinet. Catal. 2021. V. 62. № 1. P. 181. https://doi.org/10.1134/S0023158421010018
- Bychkov V.Y., Tyulenin Y.P., Korchak V.N. // Kinet. Catal. 2003. V. 44. P. 353. https://doi.org/10.1023/A:1024494918755
- Roslan N.A., Zainal Abidin S., Osazuwa O.U., Chin S.Y., Taufiq-Yap Y.H. // Int. J. Hydrogen Energy. 2021. V. 46. P. 30959. https://doi.org/10.1016/j.ijhydene.2021.03.162
- Tavanarad M., Meshkani F., Rezaei M. // J. CO2 Util. 2018. V. 24. P. 298. https://doi.org/10.1016/j.jcou.2018.01.009
- Fionov Y., Khlusova K., Chuklina S., Mushtakov A., Fionov A., Zhukov D., Averin A., Zhukova A. // Fuel. 2024. V. 376. 132685. https://doi.org/10.1016/j.fuel.2024.132685
- Golestani Kashani M., Ramezani Y., Meshkani F. // Mater. Today Commun. 2024. V. 40. 109999. https://doi.org/10.1016/j.mtcomm.2024.109999
- Memarian Z., Meshkani F. // Fuel. 2025. In press. https://doi.org/10.1016/j.fuel.2025.134902
- Huang L., Li D., Tian D., Jiang L., Li Z., Wang H., Li K. // Energy Fuel. 2022. V. 36. № 10. P. 5102. https://doi.org/10.1021/acs.energyfuels.2c00523
- Zhukova A.I., Chuklina S.G., Maslenkova S.A. // Catal. Today. 2021. V. 379. P. 159. https://doi.org/10.1016/j.cattod.2021.02.015
- Zhukova A., Fionov Y., Semenova S., Khaibullin S., Chuklina S., Maslakov K., Zhukov D., Isaikina O., Mushtakov A., Fionov A. // J. Phys. Chem. C. 2024. V. 128. № 47. P. 20177. https://doi.org/10.1021/acs.jpcc.4c07213
- Salehi S., Alavi S.M., Rezaei M., Akbari E., Varbar M. // J. CO2 Util. 2024. V. 81. 102737. https://doi.org/10.1016/j.jcou.2024.102737
- Harun N., Gimbun J., Azizan M.T., Zainal Abidin S. // Bull. Chem. React. Eng. Catal. 2016. V. 11. № 2. P. 220. https://doi.org/10.9767/bcrec.11.2.553.220-229
- Golestani Kashani M., Ramezani Y., Meshkani F. // Mater. Res. Bull. 2025. V. 182. 113135. https://doi.org/10.1016/j.materresbull.2024.113135
- Roslan N.A., Zainal Abidin S., Osazuwa O.U., Chin S.Y., Taufiq-Yap Y.H. // Fuel. 2022. V. 314. 123050. https://doi.org/10.1016/j.fuel.2021.123050
- Lyu Y., Jocz J., Xu R., Stavitski E., Sievers C. // ACS Catal. 2020. V. 10. № 19. P. 11235. https://doi.org/10.1021/acscatal.0c02426
- Huang Y., Li X., Zhang Q., Vinokurov V.A., Huang W. // Fuel. 2022. V. 310. 122449. https://doi.org/10.1016/j.fuel.2021.122449
- Wang Z., Cao X.-M., Zhu J., Hu P. // J. Catal. 2014. V. 311. P. 469. https://doi.org/10.1016/j.jcat.2013.12.015
- Harun N., Gimbun J., Azizan M.T., Zainal Abidin S. // Bull. Chem. React. Eng. Catal. 2016. V. 11. P. 220. https://doi.org/10.9767/bcrec.11.2.553.220-229
- Donphai W., Faungnawakij K., Chareonpanich M., Limtrakul J. // Appl. Catal. A: Gen. 2014. V. 475. P. 16. https://doi.org/10.1016/j.apcata.2014.01.014
- Zhukova A., Fionov Y., Chuklina S., Mikhalenko I., Fionov A.V., Isaikina O., Zhukov D.Y., de Lima A.M. // Energy Fuel. 2024. V. 38. P. 482. https://doi.org/10.1021/acs.energyfuels.3c03421
- Zhang G., Wang Y., Li X., Bai Y., Zheng L., Wu L., Han X. // Ind. Eng. Chem. Res. 2018. V. 57. № 50. P. 17076. https://doi.org/10.1021/acs.iecr.8b03612
- Weiss B.P., Kim S.S., Kirschvink J.L., Kopp R.E., Sankaran M., Kobayashi A., Komeili A. // Earth Planet. Sci. Lett. 2004. V. 224. P. 73. https://doi.org/10.1016/j.epsl.2004.04.024
- Manukyan A.S., Mirzakhanyan A.A., Badalyan G.R., Shirinyan G.H., Fedorenko A.G., Lianguzov N.V., Yuzyuk Y.I., Bugaev L.A., Sharoyan E.G. // J. Nanopart. Res. 2012. V. 14. P. 982. https://doi.org/10.1007/s11051-012-0982-6
- Zhou L., Li L., Wei N., Li J., Basset J.-M. // ChemCatChem. 2015. V. 7. № 16. P. 2508. https://doi.org/10.1002/cctc.201500379
- Pegios N., Bliznuk V., Theofanidis S.A., Galvita V.V., Marin G.B., Palkovits R., Simeonov K. // Appl. Surf. Sci. 2018. V. 452. P. 239. https://doi.org/10.1016/j.apsusc.2018.04.229
- Bannov A.G., Popov M.V., Kurmashov P.B. // J. Therm. Anal. Calorim. 2020. V. 142. P. 349. https://doi.org/10.1007/s10973-020-09647-2
补充文件
