ON ONE GELLERSTEDT PROBLEM WITH DATA ON PARALLEL CHARACTERISTICS
- Authors: Moiseev T.E1, Kholomeeva A.A1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 60, No 10 (2024)
- Pages: 1429-1434
- Section: BRIEF MESSAGES
- URL: https://ter-arkhiv.ru/0374-0641/article/view/649607
- DOI: https://doi.org/10.31857/S0374064124100119
- EDN: https://elibrary.ru/JSPCVF
- ID: 649607
Cite item
Abstract
In this paper we consider the Gellerstedt problem for the Lavrentiev-Bitsadze equation with boundary conditions on parallel characteristics in the hyperbolic part of the equation.
About the authors
T. E Moiseev
Lomonosov Moscow State University
Email: tsmoissev@mail.ru
Russia
A. A Kholomeeva
Lomonosov Moscow State University
Email: kholomeeva@cs.msu.ru
Russia
References
- Bitsadze, A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh (Some Classes of Partial Differential Equations), Moscow: Nauka, 1981.
- Smirnov, M.M., Uravneniya smeshannogo tipa (Equations of the Mixed Type), Moscow: Vysshaya Shkola, 1985.
- Frankl, F.I., New example of a plane-parallel transonic flow with a direct compression shock ending inside the flow, Izv. vuzov, 1959, no. 2, pp. 244–246.
- Moiseev, T.E., Gellerstedt problem with a generalized Frankl matching condition on the type change line with data on external characteristics, Differ. Equat., 2016, vol. 52, no. 2, pp. 240–247.
- Moiseev, T.E., Gellerstedt problem with nonclassical matching conditions for the solution gradient on the type change line with data on internal characteristics, Differ. Equat., 2016, vol. 52, no. 8, pp. 1023–1029.
- Moiseev, E.I., Moiseev, T.E., and Kholomeeva, A.A., Solvability of the Gellerstedt problem with data on parallel characteristics, Differ. Equat., 2017, vol. 53, no. 10, pp. 1346–1351.
- Moiseev, E.I., On the basis property of a sine system, Differ. Uravn., 1987, vol. 23, no. 1, pp. 177–179.
- Moiseev, E.I., The basis property for systems of sines and cosines, Dokl. Akad. Nauk SSSR, 1984, vol. 275, no. 4, pp. 794–798.
- Moiseev, T.E., On the solution of the Gellerstedt problem for the Lavrent’ev–Bitsadze equation, Differ. Equat., 2012, vol. 48, no. 10, pp. 1433–1435.
Supplementary files
