Complex for Thomson Scattering Diagnostics on the TRT Tokamak

详细

A diagnostic system for Thomson scattering of the central, edge and divertor plasma regions of a tokamak with reactor technologies is discussed. The rationale and choice of technical solutions are given, the composition of the Thomson scattering diagnostic complex is discussed, as well as an estimate of the accuracy of measuring the electron temperature and plasma density in the central edge and divertor regions of the TRT tokamak. Particular attention is paid to ensuring the functionality of the proposed diagnostics in the reactor mode of the tokamak operation and the results of testing diagnostic equipment in experiments on the Globus-M2 tokamak.

全文:

受限制的访问

作者简介

E. Mukhin

Ioffe Institute, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

S. Tolstyakov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

G. Kurskiev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

N. Zhiltsov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

N. Ermakov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

E. Tkachenko

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

A. Koval

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

V. Solovey

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

S. Aleksandrov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

A. Nikolaev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

D. Antropov

Efremov Institute of Electrophysical Apparatus

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg

A. Bondar

Efremov Institute of Electrophysical Apparatus

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg

I. Kedrov

Efremov Institute of Electrophysical Apparatus

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg

T. Marchenko

Efremov Institute of Electrophysical Apparatus

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg

A. Kornev

Lasers & Optical Systems Company

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg

A. Makarov

Lasers & Optical Systems Company

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg

D. Bogachev

Spectral-Tech LLC

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg

D. Samsonov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

E. Guk

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

V. Klimov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

E. Smirnova

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

A. Sotnikov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

A. Razdobarin

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

A. Bazhenov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

I. Bocharov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

V. Bocharnikov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

I. Bukreev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

A. Dmitriev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

D. Elets

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

I. Tereshchenko

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

L. Varshavchik

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

A. Chernakov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

P. Pankrat’ev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

G. Marchii

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

M. Minbaev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

K. Nikolaenko

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

N. Kungurtsev

Spectral-Tech LLC

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg

N. Sakharov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

Y. Petrov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

A. Mokeev

Private Institution “ITER Center”

Email: e.mukhin@mail.ioffe.ru
俄罗斯联邦, Moscow

参考

  1. Mukhin E., Vukolov K., Semenov V., Tolstyakov S., Kochergin M., Kurskiev G., Podushnikova K., Razdobarin A., Gorodetsky A., Zalavutdinov R., Bukhovets V., Zakharov A., Bulovich S., Veiko V., Shakshno E. // Nucl. Fusion. 2009. V. 49. P. 085032. https://doi.org/10.1088/0029-5515/49/8/085032
  2. Mukhin E. E., Semenov V. V., Razdobarin A. G., Tolstyakov S. Yu., Kochergin M. M., Kurskiev G. S., Podushnikova K. A., Masyukevich S. V., Kirilenko D. A., Sitni-kova A. A., Chernakov P. V., Gorodetsky A. E., Bukhovets V. L., Zalavutdinov R. Kh., Zakharov A. P., Arkhipov I. I., Khimich Yu.P., Nikitin D. B., Gorshkov V. N., Smirnov A. S., Chernoizumskaja T. V., Khilkevitch E. M., Bulovich S. V., Voitsenya V. S., Bondarenko V. N., Konovalov V. G., Ryzhkov I. V., Nekhaieva O. M., Skorik O. A., Vukolov K. Yu., Khripunov V. I., Andrew P. // Nucl. Fusion. 2012. V. 52. P. 013017. https://doi.org/10.1088/0029-5515/52/1/013017
  3. Nemov A., Modestov V., Buslakov I., Loginov I., Ivashov I., Lukin A., Borovkov A., Kochergin M., Mukhin E., Litvinov A., Koval A., Tolstyakov S., Andrew P. // Fusion Eng. Des. 2014. V. 89. P. 1241—1245. https://doi.org/10.1016/j.fusengdes.2014.04.008
  4. Razdobarin A. G., Dmitriev A. M., Bazhenov A. N., Bukreev I. M., Kochergin M. M., Koval A. N., Kurskiev G. S., Litvinov A. E., Masyukevich S. V., Mukhin E. E., Samsonov D. S., Semenov V. V., Tolstyakov S. Yu., Andrew P., Bukhovets V. L., Gorodetsky A. E., Markin A. V., Zakharov A. P., Zalavutdinov R. Kh., Chernakov P. V., Chernoizumskaya T. V., Kobelev A. A., Miroshnikov I. V., Smirnov A. S. // Nucl. Fusion. 2015. V. 55. P. 093022. https://doi.org/10.1088/0029-5515/55/9/093022
  5. Bukreev I. M., Mukhin E. E., Bulovich S. V., Matyushenkov A. A., Babinov N. A., Dmitriev A. M., Litvinov A. E., Razdobarin A. G., Samsonov D. S., Varshavchick L. A., Zatilkin P. A. // J. Phys.: Confer. Ser. 2019. V. 1400. P. 077040. https://doi.org/10.1088/1742-6596/1400/7/077040
  6. Kobelev A., Babinov N., Barsukov Yu., Chernoizumskaya T., Dmitriev A., Mukhin E., Razdobarin A., Smirnov A. // Phys. Plasmas. 2019. V. 26. P. 013504. https://doi.org/10.1063/1.5051314
  7. Varshavchik L. A., Babinov N. A., Zatylkin P. A., Chironova A. A., Lyullin Z. G., Chernakov A. P., Dmitriev A. M., Bukreev I. M., Mukhin E. E., Razdobarin A. G., Samsonov D. S., Senitchenkov V. A., Tolstyakov S. Yu., Serenkov I. T., Sakharov V. I. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 025005. https://doi.org/10.1088/1361-6587/abca7e
  8. Babinov N. A., Razdobarin A. G., Bukreev I. M., Kirilenko D. A., Lyullin Z. G., Mukhin E. E., Sitnikova A. A., Varshavchik L. A., Zatylkin P. A., Putrik A., Klimov N. S., Kovalenko D. V., Zhitlukhin A. M., Morgan T., Brons S., De Temmerman G., Serenkov I. T., Sakharov V. I., Bulovich S. V., Gorodetsky A. E., Zalavutdinov R. Kh. // Nucl. Fusion. 2022. V. 62. P. 126004. https://doi.org/10.1088/1741-4326/ac8b1f
  9. Mukhin E. E., Nelyubov V. M., Yukish V. A., Smirnova E. P., Solovei V. A., Kalinina N. K., Nagaitsev V. G., Valishin M. F., Belozerova A. R., Enin S. A., Borisov A. A., Deryabina N. A., Khripunov V. I., Portnov D. V., Babinov N. A., Dokhtarenko D. V., Khodunov I. A., Klimov V. N., Razdobarin A. G., Alexandrov S. E., Kempenaars M. // Fusion Eng. Des. 2022. V. 176. P. 113017. https://doi.org/10.1016/j.fusengdes.2022.113017
  10. Samsonov D., Tereschenko I., Mukhin E., Gubal A., Kapustin Yu., Filimonov V., Babinov N., Dmitriev A., Nikolaev A., Komarevtsev I., Koval A., Litvinov A., Marchii G., Razdobarin A., Snigirev L., Tolstyakov S., Marinin G., Terentev D., Gorodetsky A., Zalavutdinov R., Markin A., Bukhovets V., Arkhipushkin I., Borisov A., Khripunov V., Mikhailovskii V., Modestov V., Kirienko I., Buslakov I., Chernakov P., Mokeev A., Kempenaars M., Shigin P., Drapiko E. // Nucl. Fusion. 2022. V. 62. P. 086014. https://doi.org/10.1088/1741-4326/ac544d
  11. Курскиев Г. С., Мухин Е. Е., Коваль А. Н., Жильцов Н. С., Соловей В. А., Толстяков С. Ю., Ткаченко Е. Е., Раздобарин А. Г., Дмитриев А. М., Корнев А. Ф., Макаров А. М., Горшков А. В., Асадулин Г. М., Кукушкин А. Б., Сдвиженский П. А., Чернаков П. В. // Физика плазмы. 2022. Т. 48. С. 711. https://doi.org/10.31857/S0367292122100134
  12. Мухин Е. Е., Толстяков С. Ю., Курскиев Г. С., Жильцов Н. С., Коваль А. Н., Соловей В. А., Горбунов А. В., Горшков А. В., Асадулин Г. М., Корнев А. Ф., Макаров А. М., Богачев Д. Л., Бабинов Н. А., Самсонов Д. С., Раздобарин А. Г., Баженов А. Н., Букреев И. М., Дмитриев А. М., Елец Д. И., Сениченков В. А., Терещенко И. Б., Варшавчик Л. А., Ходунов И. А., Чернаков Ан.П., Марчий Г. В., Николаенко К. О., Ермаков Н. В. // Физика плазмы. 2022. Т. 48. С. 722. https://doi.org/10.31857/S0367292122100146
  13. Kurzan B., Lohs A., Sellmair G., Sochor M. and ASDEX Upgrade team. // J. Instrumentation. 2021. V. 16. P. C09012.
  14. Glass F., Carlstrom T. N., Du D., McLean A.G., Taussig D. A., Boivin R. L. // Rev. Sci. Instrum. 2016. V. 87. P. 11E508. https://doi.org/10.1063/1.4955281
  15. Hawke J., Scannell R., Harrison J., Huxford R., Bohm P. // J. Instrumentation. 2013. V. 8. P. C11010.
  16. Bassan M. Performance analysis of the 55.C1 CPTS Diagnostic. https://user.iter.org/default.aspx?uid=UG2AFL, https://www.cherab.info/demonstrations/demonstrations.html#creating-plasmas.
  17. Kurskiev G. S., Sdvizhenskii P. A., Bassan M., Andrew P., Bazhenov A. N., Bukreev I. M., Chernakov P. V., Kochergin M. M., Kukushkin A. B., Kukushkin A. S., Mukhin E. E., Razdobarin A. G., Samsonov D. S., Semenov V. V., Tolstyakov S. Yu., Kajita S., Masyukevich S. // Nucl. Fusion. 2015. V. 55. 5. https://doi.org/ 10.1088/0029-5515/55/5/053024
  18. Kukushkin A. S., Kukushkin A. B. On the calculation of Bremsstrahlung from ITER divertor. https://user.iter.org/default.aspx?uid=3338YT.
  19. Леонов В. М., Коновалов С. В., Жоголев В. Е., Кавин А. А., Красильников А. В., Куянов А. Ю., Лукаш В. Э., Минеев А. Б., Хайрутдинов Р. Р. // Физика плазмы. 2021. Т. 47. С. 986. https://doi.org/10.31857/S0367292121120040
  20. Mukhin E. E., Kurskiev G. S., Gorbunov A. V., Samsonov D. S., Tolstyakov S. Yu., Razdobarin A. G., Babinov N. A., Bazhenov A. N., Bukreev I. M., Dmitriev A. M., Elets D. I., Koval A. N., Litvinov A. E., Masyukevich S. V., Senitchenkov V. A., Solovei V. A., Tereschenko I. B., Varshavchik L. A., Kukushkin A. S., Khodunov I. A., Levashova M. G., Lisitsa V. S., Vukolov K. Yu., Berik E. B., Chernakov P. V., Chernakov Al.P., Chernakov An.P., Zatilkin P. A., Zhiltsov N. S., Krivoruchko D. D., Skrylev A. V., Mokeev A. N., Andrew P., Kempenaars M., Vayakis G., Walsh M. J. // Nucl. Fusion. 2019. V. 59. P. 086052. https://doi.org/10.1088/1741-4326/ab1cd5
  21. Smith O. R.P., Gowers C., Nielsen P., Salzmann H. // Rev. Sci. Instrum. 1997. V. 68. P. 725. https://doi.org/10.1063/1.1147686
  22. Mukhin E. E., Pitts R. A., Andrew P., Bukreev I. M., Chernakov P. V., Giudicotti L., Huijsmans G., Kochergin M. M., Koval A. N., Kukushkin A. S., Kurskiev G. S., Litvinov A. E., Masyukevich S. V., Pasqualotto R., Razdobarin A. G., Semenov V. V., Tolstyakov S. Yu., Walsh M. J. // Nucl. Fusion. 2014. V. 54. P. 043007. https://doi.org/10.1088/0029-5515/54/4/043007
  23. Kurskiev G. S., Chernakov Al.P., Solovey V. A., Tolstyakov S. Yu., Mukhin E. E., Koval A. N., Bazhenov A. N., Aleksandrov S. E., Zhiltsov N. S., Senichenkov V. A., Lukoyanova A. V., Chernakov P. V., Varfolomeev V. I., Gusev V. K., Kiselev E. O., Petrov Yu.V., Sakharov N. V., Minaev V. B., Novokhatsky A. N., Patrov M. I., Gorshkov A. V., Asadulin G. M., Belabas I. S. // Nuclear Inst. Methods in Phys. Res. A. 2020. V. 963. P. 163734. https://doi.org/10.1016/j.nima.2020.163734
  24. Zhiltsov N. S., Kurskiev G. S., Mukhin E. E., Solovey V. A., Tolstyakov S. Yu., Aleksandrov S. E., Bazhenov A. N., Chernakov Al.P. // Nuclear Inst. Methods in Phys. Res. A. 2020. V. 976. P. 164289. https://doi.org/10.1016/j.nima.2020.164289
  25. Жильцов Н. С., Курскиев Г. С., Соловей В. А., Гусев В. К., Кавин А. А., Киселёв Е. О., Минаев В. Б., Мухин Е. Е., Петров Ю. В., Сахаров Н. В., Солоха В. В., Новохацкий А. Н., Ткаченко Е. Е., Толстяков С. Ю., Тюхменева Е. А. // Письма в ЖТФ. 2023. Т. 49. С. 13.
  26. Kurskiev G. S., Zhiltsov N. S., Koval A. N., Kornev A. F., Makarov А. М., Mukhin E. E., Petrov Yu.V., Sakharov N. V., Solovey V. A., Тkachenko Е. Е., Tolstyakov S. Yu., Chernakov P. V. // Tech. Phys. Lett. 2022. V. 48. P. 78. https://doi.org/10.21883/TPL.2022.15.54273.19019
  27. Асадулин Г. М., Баженов А. Н., Бельбас И. С., Горшков А. В., Коваль А. Н., Курскиев Г. С., Соловей В. А., Солоха В. В., Чернаков Ал.П. // ВАНТ. Сер. Термоядерный синтез. 2019. Т. 42. С. 89. https://doi.org/10.21517/0202-3822-2019-42-1-89-94
  28. Ritt S., Dinapoli R., Hartmann U. // Nuclear Inst. Methods in Phys. Res. A. 2010. V. 623. P. 486. https://doi.org/10.1016/j.nima.2010.03.045
  29. Kornev A. F., Davtian A. S., Kovyarov A. S., Makarov A. M., Oborotov D. O., Pokrovskii V. P., Porozov A. A., Sobolev S. S., Stupnikov V. K., Kurskiev G. S., Mukhin E. E., Tolstyakov S. Yu., Andrew P., Kempenaars M., Vayakis G., Walsh M. // Fusion Eng. Design. A. 2019. V. 146. P. 1019. https://doi.org/10.1016/j.fusengdes.2019.01.147
  30. Annex 1 to DTS DDD (UVFXVC). https://user.iter.org/?uid=UVFXVC&version=v1.0.
  31. Makarov A. M., Kornev A. F., Katsev Yu.V., Stupnikov V. K. // Appl. Optics. 2021. V. 60. P. 547. https://doi.org/10.1364/AO.41290
  32. ITER System Requirements Document for diagnostics (SRD-55) from DOORS (Dynamic Object-Oriented Requirements System). https://user.iter.org/default.aspx?uid=28B39L.
  33. Litaudon X., Barbato E., Becoulet A., Doyle E. J., Fujita T., Gohil P., Imbeaux F., Sauter O., Sips G. // Plasma Phys. Control. Fusion. 2024. V. 46. P. A19.
  34. Boyer M. D., Battaglia D. J., Mueller D., Eidietis N., Erickson K., Ferron J., Gates D. A., Gerhardt S., Johnson R., Kolemen E., Menard J., Myers C. E., Sabbagh S. A., Scotti F., Vail P. // Nucl. Fusion. 2018. V. 58. P. 036016. https://doi.org/10.1088/1741-4326/aaa4d0
  35. Красильников А. В., Коновалов С. В., Бондарчук Э. Н., Мазуль И. В., Родин И. Ю., Минеев А. Б., Кузьмин Е. Г., Кавин А. А., Карпов Д. А., Леонов В. М., Хайрутдинов Р. Р., Кукушкин А. С., Портнов Д. В., Иванов А. А., Бельченко Ю. И., Денисов Г. Г. // Физика плазмы. 2021. Т. 47. С. 970. https://doi.org/10.31857/S0367292121110196
  36. Lee J.-H., Lee S. J., Kim H. J., Hahn S. H., Yamada I., Funaba H. // Fusion Eng. Design. 2023. V. 190. P. 113532. https://doi.org/10.1016/j.fusengdes.2023.113532
  37. Laggner F. M., Diallo A., LeBlanc B.P., Rozenblat R., Tchilinguirian G., Kolemen E. and NSTX-U Team // Rev. Sci. Instrum. 2019. V. 90. P. 043501. https://doi.org/10.1063/1.5088248
  38. Rozenblat R., Kolemen E., Laggner F. M., Freeman C., Tchilinguirian G., Sicht P., Zimmer G. // Fusion Sci. Technol. 2019. V. 75. P. 835. https://doi.org/10.1080/15361055.2019.1658037
  39. Hammond K. C., Laggner F. M., Diallo A., Doskoczynski S., Freeman C., Funaba H., Gates D. A., Rozenblat R., Tchilinguirian G., Xing Z., Yamada I., Yasuhara R., Zimmer G., Kolemen E. // Rev. Sci. Instrum. 2021. V. 92. P. 063523. https://doi.org/10.1063/5.0041507
  40. Yamada I., Funaba H., Lee J.-H., Huang Y., Liu C. // Plasma Fusion Res. 2022. V. 17. P. 2402061. https://doi.org/10.1585/pfr.17.2402061
  41. Shibaev S., Naylor G., Scannell R., McArdle G.J., Walsh M. J. // 17th IEEE-NPSS Real Time Conf. Lisbon, Portugal. 2010. P. 1. https://doi.org/10.1109/RTC.2010.5750394
  42. Shibaev S., Naylor G., Scannell R., McArdle G.J., O’Gorman T., Walsh M. J. // Fusion Eng. Design. 2010. V. 85. P. 683. https://doi.org/10.1016/j.fusengdes.2010.03.035
  43. Arnichand H., Andrebe Y., Blanchard P., Antonioni S., Couturier S., Decker J., Duval B. P., Felici F., Galperti C., Isoz P.-F., Lavanchy P., Llobet X., Marletaz B., Marmillod P., Masur J. // J. Instrumentation. 2019. V. 14. P. C09013. https://doi.org/10.1088/1748-0221/14/09/C09013
  44. Carlstrom T. N., Campbell G. L., DeBoo J.C., Evanko R., Evans J., Greenfield C. M., Haskovec J., Hsieh C. L., McKee E., Snider R. T., Stockdale R., Trost P. K., Thomas M. P. // Rev. Sci. Instrum. 1992. V. 63. P. 4901. https://doi.org/10.1063/1.1143545.25
  45. Курскиев Г. С., Сахаров Н. В., Щёголев П. Б., Бахарев Н. Н., Киселев E. O., Авдеева Г. Ф., Гусев В. K., Ибляминова A. Д., Минаев В. Б., Мирошников И. В., Патров M. И., Петров Ю. В., Тельнова А. Ю., Толстяков С. Ю., Токарев В. А. // Вопр. атомной науки и техники. Сер. Термоядерный синтез. 2016. Т. 39. С. 86. https://doi.org/10.21517/0202-3822-2016-39-4-86-94
  46. Kadziela M., Jablonski B., Perek P., Makowski D. // J. Fusion Energy. 2020. V. 39. P. 261.
  47. Ермаков Н. В., Жильцов Н. С., Курскиев Г. С., Мухин Е. Е., Толстяков С. Ю., Ткаченко Е. Е., Соловей В.А., Николаенко К. О., Коваль А. Н., Петров Ю. В., Сахаров Н. В., Бочаров И. В., Рожанский В. А., Сениченков И. Ю., Долгова К. В. // Физика плазмы. 2023. Т. 49. C.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Location of the schemes for sensing the Thomson scattering systems of the TRT tokamak: schemes for conducting a laser beam from the nozzle 8 into the nozzle 13 and collecting radiation through the nozzle 9, as well as the rays of the collection system from the nozzle 13 for the chord 1 of the divertor nozzle 16 (top view) (a). The figures correspond to the large radius of the tokamak: 2777 mm = r + 1.1a (r/a=1.1); 2720 mm = r + a (r/a = 1); 2634 mm = r + 0.85 a (r /a = 0.85); 1979 mm = r — 0.3a (r/a = -0.3); also in 3-dimensional geometry (b); cutouts at the output in the equatorial nozzles 8, 9 and 13, circled with red lines (c); the sounding chords in the poloidal plane of the divertor nozzle 16 (d).

下载 (324KB)
3. Fig. 2. Configuration of spectral channels of a filter polychromator for the diagnosis of central and marginal plasma in comparison with the spectrum of braking and linear plasma background radiation calculated in Cherab code by the Thomson scattering of central plasma (CPTS) team ITER [16]. The calculation was performed for the first mirror of the CPTS collection system using the first beryllium wall.

下载 (61KB)
4. Fig. 3. Sensitivity distribution over spectral channels optimized for error estimation. The calculation was carried out under the assumption of a quantum yield value of 0.42 (1051.5 nm), 0.68 (1027 nm), 0.78 (985 nm), 0.91 (884.25 nm), 0.93 (776, 647, 562 nm), which corresponds to the best indicators achieved by manufacturers of silicon LCD companies Hamamatsu, Excelitas, Ioffe-APD.

下载 (184KB)
5. Fig. 4. Comparison of the calculated scattering signals in comparison with the background level depending on Te. The solid lines in Figures (a), (b) and (c) show the TP signal in the spectral channel, and the dashed line of the same color corresponds to the level of the background signal in this channel. The level of braking radiation is calculated for chord measurements and includes a set of signals from different plasma regions with different temperatures for a TRT discharge [35] with a 10% lithium content at 〈ne〉 = 2·1020 m−3: (a) for the central system in comparison with the background (E1064nm = 2.4 J, ne = 1×1019 m−3); (b) for edge systems in comparison with the background (E1064nm = 4.8 J, ne = 0.5×1019 m−3); (c) for divertor system in comparison with the background (E1064nm = 1.5 J, ne = 1×1019 m−3); (d) background characteristic of diagnostics in the area of the TRT divertor.

下载 (449KB)
6. Fig. 5. Expected measurement error of Te and ne for: (a) central (EL = 2.4 J, ne = 1×1019 m−3); (b) marginal (EL = 4.8 J, ne = 0.5×1019 m−3); (c) divertor plasma (EL = 1.5 J, ne = 1 ×1019 m−3).

下载 (254KB)
7. Fig. 6. Geometry of the collection of scattered radiation from the sounding chord No. 1 located along the separatrix. The given projection curves on a poloidal plane in the toroidal coordinate system of the optical axes of the collection system from different points of the sounding chord are important for the correct assessment of background radiation. The projection curves represent a group of points where the probing chords intersect all poloidal sections.

下载 (207KB)
8. Fig. 7. Characteristics of spectral channels of the TR system polychromator and contours of the Thomson scattering line. The relative sensitivity of spectral channels at different laser wavelengths is shown by rectangles of different heights. When calculating the sensitivity, normalization was made for the same laser energy, taking into account the decrease in the number of shorter-wavelength photons per unit of laser energy: (a) the relative location of a set of spectral channels and Thomson line contours at wavelengths of 1064, 1047 nm for electronic temperatures of 0.3, 5, 50, 500 and 2000 eV; (b) the relative location of the set spectral channels and Thomson line contours at wavelengths of 1064, 946 and 532 nm for electronic temperatures of 0.05, 5, 10, 25 and 50 keV.

下载 (112KB)
9. Fig. 8. The contribution of noise determined by plasma light to the measurement error of the TP signal depending on the signal intensity during the plasma experiment at the Globus-M2 installation compared with various types of preamps (shown by lines) [23].

下载 (90KB)
10. Fig. 9. A set of 10 Thomson scattering filter polychromators mounted in a standard 19-inch rack.

下载 (136KB)
11. Fig. 10. Signal amplitude as a function of ambient temperature. Red dots indicate heating, black dots indicate cooling of a preamplifier with electronic compensation of thermal drift measured at an LFD gain factor of M = 75 (for 20 °C).

下载 (72KB)
12. Fig. 11. Lasers operating at a wavelength of 1064 nm (left) and 1047 nm (right) when operating as part of the diagnostic complex TP of the central plasma of the tokamak “Globus-M2".

下载 (195KB)
13. Fig. 12. The output energy in the pulse of the Nd: YLF laser with a wavelength of 1047 nm. Over 100 million operating pulses, the output pulse energy decreased by ~9% from 2.0 to 1.85 J.

下载 (80KB)
14. 13. The main parameters of the experiment for two discharges of the Globus-M2 tokamak: discharge No. 42613 with the concentration control system turned on and control discharge No. 42611 without control: (a) the integral concentration obtained using a microwave interferometer (1, 3) and the TR method (2, 4), 5 — plasma current; (b) measured local concentration neR=49: real—time DAC output (1) and post—processing results (2), 3 — preset concentration control program, 4 - the difference between the set and measured values, vertical lines show the probing moments; (c) voltage on the piezo valve: 1 - in the feedback circuit, 2 — on the auxiliary valve. The gray area is the dead zone of the valve. The total radiation intensity of the H and D lines in discharge No. 42613: 3 — for the observation chord directed at the gas inlet capillary, 4 — for the background signal [25].

下载 (145KB)
15. Fig. 14. The results of measuring the electron temperature of the divertor plasma at one spatial point, carried out in the time interval from 166 to 196 ms, during the displacement of the plasma cord diagonally upwards relative to the measurement point.

下载 (71KB)

版权所有 © Russian Academy of Sciences, 2024