Complex for Thomson Scattering Diagnostics on the TRT Tokamak

Мұқаба

Толық мәтін

Аннотация

A diagnostic system for Thomson scattering of the central, edge and divertor plasma regions of a tokamak with reactor technologies is discussed. The rationale and choice of technical solutions are given, the composition of the Thomson scattering diagnostic complex is discussed, as well as an estimate of the accuracy of measuring the electron temperature and plasma density in the central edge and divertor regions of the TRT tokamak. Particular attention is paid to ensuring the functionality of the proposed diagnostics in the reactor mode of the tokamak operation and the results of testing diagnostic equipment in experiments on the Globus-M2 tokamak.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Mukhin

Ioffe Institute, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

S. Tolstyakov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

G. Kurskiev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

N. Zhiltsov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

N. Ermakov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

E. Tkachenko

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

A. Koval

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

V. Solovey

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

S. Aleksandrov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

A. Nikolaev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

D. Antropov

Efremov Institute of Electrophysical Apparatus

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg

A. Bondar

Efremov Institute of Electrophysical Apparatus

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg

I. Kedrov

Efremov Institute of Electrophysical Apparatus

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg

T. Marchenko

Efremov Institute of Electrophysical Apparatus

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg

A. Kornev

Lasers & Optical Systems Company

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg

A. Makarov

Lasers & Optical Systems Company

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg

D. Bogachev

Spectral-Tech LLC

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg

D. Samsonov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

E. Guk

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

V. Klimov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

E. Smirnova

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

A. Sotnikov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

A. Razdobarin

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

A. Bazhenov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

I. Bocharov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

V. Bocharnikov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

I. Bukreev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

A. Dmitriev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

D. Elets

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

I. Tereshchenko

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

L. Varshavchik

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

A. Chernakov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

P. Pankrat’ev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

G. Marchii

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

M. Minbaev

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

K. Nikolaenko

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

N. Kungurtsev

Spectral-Tech LLC

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg

N. Sakharov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

Y. Petrov

Ioffe Institute, Russian Academy of Sciences

Email: e.mukhin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

A. Mokeev

Private Institution “ITER Center”

Email: e.mukhin@mail.ioffe.ru
Ресей, Moscow

Әдебиет тізімі

  1. Mukhin E., Vukolov K., Semenov V., Tolstyakov S., Kochergin M., Kurskiev G., Podushnikova K., Razdobarin A., Gorodetsky A., Zalavutdinov R., Bukhovets V., Zakharov A., Bulovich S., Veiko V., Shakshno E. // Nucl. Fusion. 2009. V. 49. P. 085032. https://doi.org/10.1088/0029-5515/49/8/085032
  2. Mukhin E. E., Semenov V. V., Razdobarin A. G., Tolstyakov S. Yu., Kochergin M. M., Kurskiev G. S., Podushnikova K. A., Masyukevich S. V., Kirilenko D. A., Sitni-kova A. A., Chernakov P. V., Gorodetsky A. E., Bukhovets V. L., Zalavutdinov R. Kh., Zakharov A. P., Arkhipov I. I., Khimich Yu.P., Nikitin D. B., Gorshkov V. N., Smirnov A. S., Chernoizumskaja T. V., Khilkevitch E. M., Bulovich S. V., Voitsenya V. S., Bondarenko V. N., Konovalov V. G., Ryzhkov I. V., Nekhaieva O. M., Skorik O. A., Vukolov K. Yu., Khripunov V. I., Andrew P. // Nucl. Fusion. 2012. V. 52. P. 013017. https://doi.org/10.1088/0029-5515/52/1/013017
  3. Nemov A., Modestov V., Buslakov I., Loginov I., Ivashov I., Lukin A., Borovkov A., Kochergin M., Mukhin E., Litvinov A., Koval A., Tolstyakov S., Andrew P. // Fusion Eng. Des. 2014. V. 89. P. 1241—1245. https://doi.org/10.1016/j.fusengdes.2014.04.008
  4. Razdobarin A. G., Dmitriev A. M., Bazhenov A. N., Bukreev I. M., Kochergin M. M., Koval A. N., Kurskiev G. S., Litvinov A. E., Masyukevich S. V., Mukhin E. E., Samsonov D. S., Semenov V. V., Tolstyakov S. Yu., Andrew P., Bukhovets V. L., Gorodetsky A. E., Markin A. V., Zakharov A. P., Zalavutdinov R. Kh., Chernakov P. V., Chernoizumskaya T. V., Kobelev A. A., Miroshnikov I. V., Smirnov A. S. // Nucl. Fusion. 2015. V. 55. P. 093022. https://doi.org/10.1088/0029-5515/55/9/093022
  5. Bukreev I. M., Mukhin E. E., Bulovich S. V., Matyushenkov A. A., Babinov N. A., Dmitriev A. M., Litvinov A. E., Razdobarin A. G., Samsonov D. S., Varshavchick L. A., Zatilkin P. A. // J. Phys.: Confer. Ser. 2019. V. 1400. P. 077040. https://doi.org/10.1088/1742-6596/1400/7/077040
  6. Kobelev A., Babinov N., Barsukov Yu., Chernoizumskaya T., Dmitriev A., Mukhin E., Razdobarin A., Smirnov A. // Phys. Plasmas. 2019. V. 26. P. 013504. https://doi.org/10.1063/1.5051314
  7. Varshavchik L. A., Babinov N. A., Zatylkin P. A., Chironova A. A., Lyullin Z. G., Chernakov A. P., Dmitriev A. M., Bukreev I. M., Mukhin E. E., Razdobarin A. G., Samsonov D. S., Senitchenkov V. A., Tolstyakov S. Yu., Serenkov I. T., Sakharov V. I. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 025005. https://doi.org/10.1088/1361-6587/abca7e
  8. Babinov N. A., Razdobarin A. G., Bukreev I. M., Kirilenko D. A., Lyullin Z. G., Mukhin E. E., Sitnikova A. A., Varshavchik L. A., Zatylkin P. A., Putrik A., Klimov N. S., Kovalenko D. V., Zhitlukhin A. M., Morgan T., Brons S., De Temmerman G., Serenkov I. T., Sakharov V. I., Bulovich S. V., Gorodetsky A. E., Zalavutdinov R. Kh. // Nucl. Fusion. 2022. V. 62. P. 126004. https://doi.org/10.1088/1741-4326/ac8b1f
  9. Mukhin E. E., Nelyubov V. M., Yukish V. A., Smirnova E. P., Solovei V. A., Kalinina N. K., Nagaitsev V. G., Valishin M. F., Belozerova A. R., Enin S. A., Borisov A. A., Deryabina N. A., Khripunov V. I., Portnov D. V., Babinov N. A., Dokhtarenko D. V., Khodunov I. A., Klimov V. N., Razdobarin A. G., Alexandrov S. E., Kempenaars M. // Fusion Eng. Des. 2022. V. 176. P. 113017. https://doi.org/10.1016/j.fusengdes.2022.113017
  10. Samsonov D., Tereschenko I., Mukhin E., Gubal A., Kapustin Yu., Filimonov V., Babinov N., Dmitriev A., Nikolaev A., Komarevtsev I., Koval A., Litvinov A., Marchii G., Razdobarin A., Snigirev L., Tolstyakov S., Marinin G., Terentev D., Gorodetsky A., Zalavutdinov R., Markin A., Bukhovets V., Arkhipushkin I., Borisov A., Khripunov V., Mikhailovskii V., Modestov V., Kirienko I., Buslakov I., Chernakov P., Mokeev A., Kempenaars M., Shigin P., Drapiko E. // Nucl. Fusion. 2022. V. 62. P. 086014. https://doi.org/10.1088/1741-4326/ac544d
  11. Курскиев Г. С., Мухин Е. Е., Коваль А. Н., Жильцов Н. С., Соловей В. А., Толстяков С. Ю., Ткаченко Е. Е., Раздобарин А. Г., Дмитриев А. М., Корнев А. Ф., Макаров А. М., Горшков А. В., Асадулин Г. М., Кукушкин А. Б., Сдвиженский П. А., Чернаков П. В. // Физика плазмы. 2022. Т. 48. С. 711. https://doi.org/10.31857/S0367292122100134
  12. Мухин Е. Е., Толстяков С. Ю., Курскиев Г. С., Жильцов Н. С., Коваль А. Н., Соловей В. А., Горбунов А. В., Горшков А. В., Асадулин Г. М., Корнев А. Ф., Макаров А. М., Богачев Д. Л., Бабинов Н. А., Самсонов Д. С., Раздобарин А. Г., Баженов А. Н., Букреев И. М., Дмитриев А. М., Елец Д. И., Сениченков В. А., Терещенко И. Б., Варшавчик Л. А., Ходунов И. А., Чернаков Ан.П., Марчий Г. В., Николаенко К. О., Ермаков Н. В. // Физика плазмы. 2022. Т. 48. С. 722. https://doi.org/10.31857/S0367292122100146
  13. Kurzan B., Lohs A., Sellmair G., Sochor M. and ASDEX Upgrade team. // J. Instrumentation. 2021. V. 16. P. C09012.
  14. Glass F., Carlstrom T. N., Du D., McLean A.G., Taussig D. A., Boivin R. L. // Rev. Sci. Instrum. 2016. V. 87. P. 11E508. https://doi.org/10.1063/1.4955281
  15. Hawke J., Scannell R., Harrison J., Huxford R., Bohm P. // J. Instrumentation. 2013. V. 8. P. C11010.
  16. Bassan M. Performance analysis of the 55.C1 CPTS Diagnostic. https://user.iter.org/default.aspx?uid=UG2AFL, https://www.cherab.info/demonstrations/demonstrations.html#creating-plasmas.
  17. Kurskiev G. S., Sdvizhenskii P. A., Bassan M., Andrew P., Bazhenov A. N., Bukreev I. M., Chernakov P. V., Kochergin M. M., Kukushkin A. B., Kukushkin A. S., Mukhin E. E., Razdobarin A. G., Samsonov D. S., Semenov V. V., Tolstyakov S. Yu., Kajita S., Masyukevich S. // Nucl. Fusion. 2015. V. 55. 5. https://doi.org/ 10.1088/0029-5515/55/5/053024
  18. Kukushkin A. S., Kukushkin A. B. On the calculation of Bremsstrahlung from ITER divertor. https://user.iter.org/default.aspx?uid=3338YT.
  19. Леонов В. М., Коновалов С. В., Жоголев В. Е., Кавин А. А., Красильников А. В., Куянов А. Ю., Лукаш В. Э., Минеев А. Б., Хайрутдинов Р. Р. // Физика плазмы. 2021. Т. 47. С. 986. https://doi.org/10.31857/S0367292121120040
  20. Mukhin E. E., Kurskiev G. S., Gorbunov A. V., Samsonov D. S., Tolstyakov S. Yu., Razdobarin A. G., Babinov N. A., Bazhenov A. N., Bukreev I. M., Dmitriev A. M., Elets D. I., Koval A. N., Litvinov A. E., Masyukevich S. V., Senitchenkov V. A., Solovei V. A., Tereschenko I. B., Varshavchik L. A., Kukushkin A. S., Khodunov I. A., Levashova M. G., Lisitsa V. S., Vukolov K. Yu., Berik E. B., Chernakov P. V., Chernakov Al.P., Chernakov An.P., Zatilkin P. A., Zhiltsov N. S., Krivoruchko D. D., Skrylev A. V., Mokeev A. N., Andrew P., Kempenaars M., Vayakis G., Walsh M. J. // Nucl. Fusion. 2019. V. 59. P. 086052. https://doi.org/10.1088/1741-4326/ab1cd5
  21. Smith O. R.P., Gowers C., Nielsen P., Salzmann H. // Rev. Sci. Instrum. 1997. V. 68. P. 725. https://doi.org/10.1063/1.1147686
  22. Mukhin E. E., Pitts R. A., Andrew P., Bukreev I. M., Chernakov P. V., Giudicotti L., Huijsmans G., Kochergin M. M., Koval A. N., Kukushkin A. S., Kurskiev G. S., Litvinov A. E., Masyukevich S. V., Pasqualotto R., Razdobarin A. G., Semenov V. V., Tolstyakov S. Yu., Walsh M. J. // Nucl. Fusion. 2014. V. 54. P. 043007. https://doi.org/10.1088/0029-5515/54/4/043007
  23. Kurskiev G. S., Chernakov Al.P., Solovey V. A., Tolstyakov S. Yu., Mukhin E. E., Koval A. N., Bazhenov A. N., Aleksandrov S. E., Zhiltsov N. S., Senichenkov V. A., Lukoyanova A. V., Chernakov P. V., Varfolomeev V. I., Gusev V. K., Kiselev E. O., Petrov Yu.V., Sakharov N. V., Minaev V. B., Novokhatsky A. N., Patrov M. I., Gorshkov A. V., Asadulin G. M., Belabas I. S. // Nuclear Inst. Methods in Phys. Res. A. 2020. V. 963. P. 163734. https://doi.org/10.1016/j.nima.2020.163734
  24. Zhiltsov N. S., Kurskiev G. S., Mukhin E. E., Solovey V. A., Tolstyakov S. Yu., Aleksandrov S. E., Bazhenov A. N., Chernakov Al.P. // Nuclear Inst. Methods in Phys. Res. A. 2020. V. 976. P. 164289. https://doi.org/10.1016/j.nima.2020.164289
  25. Жильцов Н. С., Курскиев Г. С., Соловей В. А., Гусев В. К., Кавин А. А., Киселёв Е. О., Минаев В. Б., Мухин Е. Е., Петров Ю. В., Сахаров Н. В., Солоха В. В., Новохацкий А. Н., Ткаченко Е. Е., Толстяков С. Ю., Тюхменева Е. А. // Письма в ЖТФ. 2023. Т. 49. С. 13.
  26. Kurskiev G. S., Zhiltsov N. S., Koval A. N., Kornev A. F., Makarov А. М., Mukhin E. E., Petrov Yu.V., Sakharov N. V., Solovey V. A., Тkachenko Е. Е., Tolstyakov S. Yu., Chernakov P. V. // Tech. Phys. Lett. 2022. V. 48. P. 78. https://doi.org/10.21883/TPL.2022.15.54273.19019
  27. Асадулин Г. М., Баженов А. Н., Бельбас И. С., Горшков А. В., Коваль А. Н., Курскиев Г. С., Соловей В. А., Солоха В. В., Чернаков Ал.П. // ВАНТ. Сер. Термоядерный синтез. 2019. Т. 42. С. 89. https://doi.org/10.21517/0202-3822-2019-42-1-89-94
  28. Ritt S., Dinapoli R., Hartmann U. // Nuclear Inst. Methods in Phys. Res. A. 2010. V. 623. P. 486. https://doi.org/10.1016/j.nima.2010.03.045
  29. Kornev A. F., Davtian A. S., Kovyarov A. S., Makarov A. M., Oborotov D. O., Pokrovskii V. P., Porozov A. A., Sobolev S. S., Stupnikov V. K., Kurskiev G. S., Mukhin E. E., Tolstyakov S. Yu., Andrew P., Kempenaars M., Vayakis G., Walsh M. // Fusion Eng. Design. A. 2019. V. 146. P. 1019. https://doi.org/10.1016/j.fusengdes.2019.01.147
  30. Annex 1 to DTS DDD (UVFXVC). https://user.iter.org/?uid=UVFXVC&version=v1.0.
  31. Makarov A. M., Kornev A. F., Katsev Yu.V., Stupnikov V. K. // Appl. Optics. 2021. V. 60. P. 547. https://doi.org/10.1364/AO.41290
  32. ITER System Requirements Document for diagnostics (SRD-55) from DOORS (Dynamic Object-Oriented Requirements System). https://user.iter.org/default.aspx?uid=28B39L.
  33. Litaudon X., Barbato E., Becoulet A., Doyle E. J., Fujita T., Gohil P., Imbeaux F., Sauter O., Sips G. // Plasma Phys. Control. Fusion. 2024. V. 46. P. A19.
  34. Boyer M. D., Battaglia D. J., Mueller D., Eidietis N., Erickson K., Ferron J., Gates D. A., Gerhardt S., Johnson R., Kolemen E., Menard J., Myers C. E., Sabbagh S. A., Scotti F., Vail P. // Nucl. Fusion. 2018. V. 58. P. 036016. https://doi.org/10.1088/1741-4326/aaa4d0
  35. Красильников А. В., Коновалов С. В., Бондарчук Э. Н., Мазуль И. В., Родин И. Ю., Минеев А. Б., Кузьмин Е. Г., Кавин А. А., Карпов Д. А., Леонов В. М., Хайрутдинов Р. Р., Кукушкин А. С., Портнов Д. В., Иванов А. А., Бельченко Ю. И., Денисов Г. Г. // Физика плазмы. 2021. Т. 47. С. 970. https://doi.org/10.31857/S0367292121110196
  36. Lee J.-H., Lee S. J., Kim H. J., Hahn S. H., Yamada I., Funaba H. // Fusion Eng. Design. 2023. V. 190. P. 113532. https://doi.org/10.1016/j.fusengdes.2023.113532
  37. Laggner F. M., Diallo A., LeBlanc B.P., Rozenblat R., Tchilinguirian G., Kolemen E. and NSTX-U Team // Rev. Sci. Instrum. 2019. V. 90. P. 043501. https://doi.org/10.1063/1.5088248
  38. Rozenblat R., Kolemen E., Laggner F. M., Freeman C., Tchilinguirian G., Sicht P., Zimmer G. // Fusion Sci. Technol. 2019. V. 75. P. 835. https://doi.org/10.1080/15361055.2019.1658037
  39. Hammond K. C., Laggner F. M., Diallo A., Doskoczynski S., Freeman C., Funaba H., Gates D. A., Rozenblat R., Tchilinguirian G., Xing Z., Yamada I., Yasuhara R., Zimmer G., Kolemen E. // Rev. Sci. Instrum. 2021. V. 92. P. 063523. https://doi.org/10.1063/5.0041507
  40. Yamada I., Funaba H., Lee J.-H., Huang Y., Liu C. // Plasma Fusion Res. 2022. V. 17. P. 2402061. https://doi.org/10.1585/pfr.17.2402061
  41. Shibaev S., Naylor G., Scannell R., McArdle G.J., Walsh M. J. // 17th IEEE-NPSS Real Time Conf. Lisbon, Portugal. 2010. P. 1. https://doi.org/10.1109/RTC.2010.5750394
  42. Shibaev S., Naylor G., Scannell R., McArdle G.J., O’Gorman T., Walsh M. J. // Fusion Eng. Design. 2010. V. 85. P. 683. https://doi.org/10.1016/j.fusengdes.2010.03.035
  43. Arnichand H., Andrebe Y., Blanchard P., Antonioni S., Couturier S., Decker J., Duval B. P., Felici F., Galperti C., Isoz P.-F., Lavanchy P., Llobet X., Marletaz B., Marmillod P., Masur J. // J. Instrumentation. 2019. V. 14. P. C09013. https://doi.org/10.1088/1748-0221/14/09/C09013
  44. Carlstrom T. N., Campbell G. L., DeBoo J.C., Evanko R., Evans J., Greenfield C. M., Haskovec J., Hsieh C. L., McKee E., Snider R. T., Stockdale R., Trost P. K., Thomas M. P. // Rev. Sci. Instrum. 1992. V. 63. P. 4901. https://doi.org/10.1063/1.1143545.25
  45. Курскиев Г. С., Сахаров Н. В., Щёголев П. Б., Бахарев Н. Н., Киселев E. O., Авдеева Г. Ф., Гусев В. K., Ибляминова A. Д., Минаев В. Б., Мирошников И. В., Патров M. И., Петров Ю. В., Тельнова А. Ю., Толстяков С. Ю., Токарев В. А. // Вопр. атомной науки и техники. Сер. Термоядерный синтез. 2016. Т. 39. С. 86. https://doi.org/10.21517/0202-3822-2016-39-4-86-94
  46. Kadziela M., Jablonski B., Perek P., Makowski D. // J. Fusion Energy. 2020. V. 39. P. 261.
  47. Ермаков Н. В., Жильцов Н. С., Курскиев Г. С., Мухин Е. Е., Толстяков С. Ю., Ткаченко Е. Е., Соловей В.А., Николаенко К. О., Коваль А. Н., Петров Ю. В., Сахаров Н. В., Бочаров И. В., Рожанский В. А., Сениченков И. Ю., Долгова К. В. // Физика плазмы. 2023. Т. 49. C.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Location of the schemes for sensing the Thomson scattering systems of the TRT tokamak: schemes for conducting a laser beam from the nozzle 8 into the nozzle 13 and collecting radiation through the nozzle 9, as well as the rays of the collection system from the nozzle 13 for the chord 1 of the divertor nozzle 16 (top view) (a). The figures correspond to the large radius of the tokamak: 2777 mm = r + 1.1a (r/a=1.1); 2720 mm = r + a (r/a = 1); 2634 mm = r + 0.85 a (r /a = 0.85); 1979 mm = r — 0.3a (r/a = -0.3); also in 3-dimensional geometry (b); cutouts at the output in the equatorial nozzles 8, 9 and 13, circled with red lines (c); the sounding chords in the poloidal plane of the divertor nozzle 16 (d).

Жүктеу (324KB)
3. Fig. 2. Configuration of spectral channels of a filter polychromator for the diagnosis of central and marginal plasma in comparison with the spectrum of braking and linear plasma background radiation calculated in Cherab code by the Thomson scattering of central plasma (CPTS) team ITER [16]. The calculation was performed for the first mirror of the CPTS collection system using the first beryllium wall.

Жүктеу (61KB)
4. Fig. 3. Sensitivity distribution over spectral channels optimized for error estimation. The calculation was carried out under the assumption of a quantum yield value of 0.42 (1051.5 nm), 0.68 (1027 nm), 0.78 (985 nm), 0.91 (884.25 nm), 0.93 (776, 647, 562 nm), which corresponds to the best indicators achieved by manufacturers of silicon LCD companies Hamamatsu, Excelitas, Ioffe-APD.

Жүктеу (184KB)
5. Fig. 4. Comparison of the calculated scattering signals in comparison with the background level depending on Te. The solid lines in Figures (a), (b) and (c) show the TP signal in the spectral channel, and the dashed line of the same color corresponds to the level of the background signal in this channel. The level of braking radiation is calculated for chord measurements and includes a set of signals from different plasma regions with different temperatures for a TRT discharge [35] with a 10% lithium content at 〈ne〉 = 2·1020 m−3: (a) for the central system in comparison with the background (E1064nm = 2.4 J, ne = 1×1019 m−3); (b) for edge systems in comparison with the background (E1064nm = 4.8 J, ne = 0.5×1019 m−3); (c) for divertor system in comparison with the background (E1064nm = 1.5 J, ne = 1×1019 m−3); (d) background characteristic of diagnostics in the area of the TRT divertor.

Жүктеу (449KB)
6. Fig. 5. Expected measurement error of Te and ne for: (a) central (EL = 2.4 J, ne = 1×1019 m−3); (b) marginal (EL = 4.8 J, ne = 0.5×1019 m−3); (c) divertor plasma (EL = 1.5 J, ne = 1 ×1019 m−3).

Жүктеу (254KB)
7. Fig. 6. Geometry of the collection of scattered radiation from the sounding chord No. 1 located along the separatrix. The given projection curves on a poloidal plane in the toroidal coordinate system of the optical axes of the collection system from different points of the sounding chord are important for the correct assessment of background radiation. The projection curves represent a group of points where the probing chords intersect all poloidal sections.

Жүктеу (207KB)
8. Fig. 7. Characteristics of spectral channels of the TR system polychromator and contours of the Thomson scattering line. The relative sensitivity of spectral channels at different laser wavelengths is shown by rectangles of different heights. When calculating the sensitivity, normalization was made for the same laser energy, taking into account the decrease in the number of shorter-wavelength photons per unit of laser energy: (a) the relative location of a set of spectral channels and Thomson line contours at wavelengths of 1064, 1047 nm for electronic temperatures of 0.3, 5, 50, 500 and 2000 eV; (b) the relative location of the set spectral channels and Thomson line contours at wavelengths of 1064, 946 and 532 nm for electronic temperatures of 0.05, 5, 10, 25 and 50 keV.

Жүктеу (112KB)
9. Fig. 8. The contribution of noise determined by plasma light to the measurement error of the TP signal depending on the signal intensity during the plasma experiment at the Globus-M2 installation compared with various types of preamps (shown by lines) [23].

Жүктеу (90KB)
10. Fig. 9. A set of 10 Thomson scattering filter polychromators mounted in a standard 19-inch rack.

Жүктеу (136KB)
11. Fig. 10. Signal amplitude as a function of ambient temperature. Red dots indicate heating, black dots indicate cooling of a preamplifier with electronic compensation of thermal drift measured at an LFD gain factor of M = 75 (for 20 °C).

Жүктеу (72KB)
12. Fig. 11. Lasers operating at a wavelength of 1064 nm (left) and 1047 nm (right) when operating as part of the diagnostic complex TP of the central plasma of the tokamak “Globus-M2".

Жүктеу (195KB)
13. Fig. 12. The output energy in the pulse of the Nd: YLF laser with a wavelength of 1047 nm. Over 100 million operating pulses, the output pulse energy decreased by ~9% from 2.0 to 1.85 J.

Жүктеу (80KB)
14. 13. The main parameters of the experiment for two discharges of the Globus-M2 tokamak: discharge No. 42613 with the concentration control system turned on and control discharge No. 42611 without control: (a) the integral concentration obtained using a microwave interferometer (1, 3) and the TR method (2, 4), 5 — plasma current; (b) measured local concentration neR=49: real—time DAC output (1) and post—processing results (2), 3 — preset concentration control program, 4 - the difference between the set and measured values, vertical lines show the probing moments; (c) voltage on the piezo valve: 1 - in the feedback circuit, 2 — on the auxiliary valve. The gray area is the dead zone of the valve. The total radiation intensity of the H and D lines in discharge No. 42613: 3 — for the observation chord directed at the gas inlet capillary, 4 — for the background signal [25].

Жүктеу (145KB)
15. Fig. 14. The results of measuring the electron temperature of the divertor plasma at one spatial point, carried out in the time interval from 166 to 196 ms, during the displacement of the plasma cord diagonally upwards relative to the measurement point.

Жүктеу (71KB)

© Russian Academy of Sciences, 2024