Digital Method of Time Correlated Single Photon Counting for Barrier Discharge Diagnosis

Capa

Citar

Texto integral

Resumo

In this work the Time Correlated Single Photon Counting method with digital post-processing was implemented to study the development of a surface barrier discharge powered by a sinusoidal alternating voltage. The resolution obtained with digital TCSPC was shown to be no worse than 300 ps with photodetectors function rise time 15 ns and oscilloscope sample rate 10 GHz. Selection of the pulses after at the postprocessing stage allowed to study the multipulse mode of the DBD, obtain the space–time diagrams of the discharge light emission and estimate the velocity of negative and positive microdischarges propagation.

Sobre autores

I. Selivonin

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: inock691@ya.ru
125412, Moscow, Russia

S. Kuvardin

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: inock691@ya.ru
125412, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

I. Moralev

Joint Institute for High Temperatures, Russian Academy of Sciences

Autor responsável pela correspondência
Email: inock691@ya.ru
125412, Moscow, Russia

Bibliografia

  1. Kogelschatz U., Eliasson B., Egli W. // J. Phys. IV Fr. 1997. V. 7. P. 4. https://doi.org/10.1051/jp4:1997405
  2. Brandenburg R. // Plasma Sources Sci. Technol. 2017. V. 26. P. 053001. https://doi.org/10.1088/1361-6595/aa6426
  3. Fridman G., Brooks A.D., Balasubramanian M., Fridman A., Gutsol A., Vasilets V.N., Ayan H, Friedman G. // Plasma Process. Polym. 2007. V. 4. 370. https://doi.org/10.1002/ppap.200600217
  4. Yagi S., Tanaka M. // J. Phys. D. Appl. Phys. 1979. V. 12. P. 1509. https://doi.org/10.1088/0022-3727/12/9/013
  5. Eliasson B., Hirth M., Kogelschatz U. // J. Phys. D. Appl. Phys. 1987. V. 20. P. 1421.
  6. Roth J.R., Rahel J., Dai X., Sherman D.M. // J. Phys. D. Appl. Phys. 2005. V. 38. P. 555. https://doi.org/10.1088/0022-3727/38/4/007
  7. Corke T.C., Jumper E.J., Post M.L., Orlov D., McLaughlin T.E. // Proc. 40th AIAA Aerosp. Sci. Meet. Reno, NV, U.S.A. 2002. P. 0350. https://doi.org/10.2514/6.2002-350.
  8. Kriegseis J., Simon B., Grundmann S. // Appl. Mech. Rev. 2016. V. 68. P. 020802. https://doi.org/10.1115/1.4033570
  9. Moreau E. // J. Phys. D. Appl. Phys. 2007. V. 40. P. 605. https://doi.org/10.1088/0022-3727/40/3/S01
  10. Ouyang L., Cao Z., Wang H., Hu R., Zhu M. // J. Alloys Compd. 2017. V. 691. P. 422. https://doi.org/10.1016/j.jallcom.2016.08.179
  11. Hoder T., Sernák M., Höft H., Gerling T., Branden-burg R. // Proc. Sci. 2015. V. April 2015. P. 1–10. https://doi.org/10.22323/1.240.0008
  12. Becker W. Advanced time-correlated single photon counting techniques. Springer Series in Chemical Physics (V. 81), 2005.
  13. Kozlov K.V., Wagner H.E., Brandenburg R., Michel P. // J. Phys. D. Appl. Phys. 2001. V. 34. P. 3164. https://doi.org/10.1088/0022-3727/34/21/309
  14. Selivonin I., Moralev I. // Plasma Sources Sci. Technol. 2021. V. 30. P. 035005. https://doi.org/10.1088/1361-6595/abe0a1
  15. Selivonin I., Moralev I. // Plasma Sources Sci. Technol. 2018. V. 27. P. 085003. https://doi.org/10.1088/1361-6595/abe0a1
  16. Selivonin I., Moralev I. // J. Phys.: Conf. Ser. 2021. V. 2100. P. 012014. https://doi.org/10.1088/1361-6595/aacbf5
  17. Jahanbakhsh S., Brüser V., Brandenburg R. // Plasma Sources Sci. Technol. 2018. V. 27. P. 115011. https://doi.org/10.1088/1361-6595/aaec5f
  18. Jahanbakhsh S., Hoder T., Brandenburg R. // J. Appl. Phys. 2019. V. 126. P. 193305. https://doi.org/10.1063/1.5124363
  19. Gibalov V.I., Pietsch G.J. // Plasma Sources Sci. Technol. 2012. V. 21. P. 024010. https://doi.org/10.1088/0963-0252/21/2/024010

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (149KB)
3.

Baixar (678KB)
4.

Baixar (200KB)
5.

Baixar (677KB)
6.

Baixar (273KB)
7.

Baixar (146KB)
8.

Baixar (88KB)
9.

Baixar (130KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023