Digital Method of Time Correlated Single Photon Counting for Barrier Discharge Diagnosis
- 作者: Selivonin I.V.1, Kuvardin S.1,2, Moralev I.A.1
-
隶属关系:
- Joint Institute for High Temperatures, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- 期: 卷 49, 编号 5 (2023)
- 页面: 462-470
- 栏目: LOW TEMPERATURE PLASMA
- URL: https://ter-arkhiv.ru/0367-2921/article/view/668535
- DOI: https://doi.org/10.31857/S0367292123600097
- EDN: https://elibrary.ru/VEUIIV
- ID: 668535
如何引用文章
全文:
详细
In this work the Time Correlated Single Photon Counting method with digital post-processing was implemented to study the development of a surface barrier discharge powered by a sinusoidal alternating voltage. The resolution obtained with digital TCSPC was shown to be no worse than 300 ps with photodetectors function rise time 15 ns and oscilloscope sample rate 10 GHz. Selection of the pulses after at the postprocessing stage allowed to study the multipulse mode of the DBD, obtain the space–time diagrams of the discharge light emission and estimate the velocity of negative and positive microdischarges propagation.
作者简介
I. Selivonin
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: inock691@ya.ru
125412, Moscow, Russia
S. Kuvardin
Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Email: inock691@ya.ru
125412, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia
I. Moralev
Joint Institute for High Temperatures, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: inock691@ya.ru
125412, Moscow, Russia
参考
- Kogelschatz U., Eliasson B., Egli W. // J. Phys. IV Fr. 1997. V. 7. P. 4. https://doi.org/10.1051/jp4:1997405
- Brandenburg R. // Plasma Sources Sci. Technol. 2017. V. 26. P. 053001. https://doi.org/10.1088/1361-6595/aa6426
- Fridman G., Brooks A.D., Balasubramanian M., Fridman A., Gutsol A., Vasilets V.N., Ayan H, Friedman G. // Plasma Process. Polym. 2007. V. 4. 370. https://doi.org/10.1002/ppap.200600217
- Yagi S., Tanaka M. // J. Phys. D. Appl. Phys. 1979. V. 12. P. 1509. https://doi.org/10.1088/0022-3727/12/9/013
- Eliasson B., Hirth M., Kogelschatz U. // J. Phys. D. Appl. Phys. 1987. V. 20. P. 1421.
- Roth J.R., Rahel J., Dai X., Sherman D.M. // J. Phys. D. Appl. Phys. 2005. V. 38. P. 555. https://doi.org/10.1088/0022-3727/38/4/007
- Corke T.C., Jumper E.J., Post M.L., Orlov D., McLaughlin T.E. // Proc. 40th AIAA Aerosp. Sci. Meet. Reno, NV, U.S.A. 2002. P. 0350. https://doi.org/10.2514/6.2002-350.
- Kriegseis J., Simon B., Grundmann S. // Appl. Mech. Rev. 2016. V. 68. P. 020802. https://doi.org/10.1115/1.4033570
- Moreau E. // J. Phys. D. Appl. Phys. 2007. V. 40. P. 605. https://doi.org/10.1088/0022-3727/40/3/S01
- Ouyang L., Cao Z., Wang H., Hu R., Zhu M. // J. Alloys Compd. 2017. V. 691. P. 422. https://doi.org/10.1016/j.jallcom.2016.08.179
- Hoder T., Sernák M., Höft H., Gerling T., Branden-burg R. // Proc. Sci. 2015. V. April 2015. P. 1–10. https://doi.org/10.22323/1.240.0008
- Becker W. Advanced time-correlated single photon counting techniques. Springer Series in Chemical Physics (V. 81), 2005.
- Kozlov K.V., Wagner H.E., Brandenburg R., Michel P. // J. Phys. D. Appl. Phys. 2001. V. 34. P. 3164. https://doi.org/10.1088/0022-3727/34/21/309
- Selivonin I., Moralev I. // Plasma Sources Sci. Technol. 2021. V. 30. P. 035005. https://doi.org/10.1088/1361-6595/abe0a1
- Selivonin I., Moralev I. // Plasma Sources Sci. Technol. 2018. V. 27. P. 085003. https://doi.org/10.1088/1361-6595/abe0a1
- Selivonin I., Moralev I. // J. Phys.: Conf. Ser. 2021. V. 2100. P. 012014. https://doi.org/10.1088/1361-6595/aacbf5
- Jahanbakhsh S., Brüser V., Brandenburg R. // Plasma Sources Sci. Technol. 2018. V. 27. P. 115011. https://doi.org/10.1088/1361-6595/aaec5f
- Jahanbakhsh S., Hoder T., Brandenburg R. // J. Appl. Phys. 2019. V. 126. P. 193305. https://doi.org/10.1063/1.5124363
- Gibalov V.I., Pietsch G.J. // Plasma Sources Sci. Technol. 2012. V. 21. P. 024010. https://doi.org/10.1088/0963-0252/21/2/024010
补充文件
