Variability of body condition of the pied flycatcher Ficedula hypoleuca breeding in the vicinity of the Middle Ural copper smelter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract – The variability of the body condition of pied flycatchers breeding near the Middle Ural copper smelter (MUCS) and in the background area in 1996–2023, a period of significant reduction in industrial emissions, was analyzed. The body condition index (BCI) of females was not related to the level of environmental pollution. The lower BCI of males near the MUCS compared to the background area was apparently due to the displacement of the low-quality individuals into transformed habitats. The BCI of yearlings was less than that of older birds, especially in females incubating early and late clutches. The BCI of incubating females increased with increasing clutch size and breeding density. The BCI of birds decreased with increasing date of breeding (females only), air temperature at the nestling stage and brood size.

Full Text

Restricted Access

About the authors

E. A. Bel’skii

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: belskii@ipae.uran.ru
Russian Federation, Ekaterinburg

A. G. Lyakhov

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: belskii@ipae.uran.ru
Russian Federation, Ekaterinburg

References

  1. Drent R.H., Daan S. The prudent parent: energetic adjustments in avian breeding // Ardea. 1980. V. 55. № 1-2. P. 225–252.
  2. Labocha M.K., Hayes J.P. Morphometric indices of body condition in birds: a review // J. Ornithol. 2012. V. 153. P. 1–22.
  3. Васильева И.Ю., Хрущова Н.А., Роговин К.А. Упитанность и запасы жира: какой из показателей упитанности лучше? Проверка на хомячке Роборовского (Phodopus roborovskii, Cricetidae, Rodentia) // Зоол. журн. 2022. Т. 101. Вып. 7. С. 819–830.
  4. Haywood S., Perrins C.M. Is clutch size in birds affected by environmental conditions during growth? // Proc. R. Soc. Lond., Ser. B: Biol. Sci. 1992. V. 249. № 1325. P. 195–197.
  5. Tinbergen J.M., Boerlijst M.C. Nestling weight and survival in individual great tits (Parus major) // J. Anim. Ecol. 1990. V. 59. P. 1113–1127.
  6. Balbontín J., Møller A.P., Hermosell I.G. et al. Lifetime individual plasticity in body condition of a migratory bird // Biol. J. Linn. Soc. 2012. V. 105. № 2. P. 420–434.
  7. Cooper N.W., Sherry T.W., Marra P.P. Experimental reduction of winter food decreases body condition and delays migration in a long-distance migratory bird // Ecology. 2015. V. 96. № 7. P. 1933–1942.
  8. Järvinen A., Väisänen R.A. Reproduction of pied flycatchers (Ficedula hypoleuca) in good and bad breeding seasons in a northern marginal area // Auk. 1984. V. 101. № 3. P. 439–450.
  9. Scheuhammer A.M. The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review // Environ. Pollut. 1987. V. 46. № 4. P. 263–295.
  10. Brotons L., Magrans M., Ferrús L., Nadal J. Direct and indirect effects of pollution on the foraging behaviour of forest passerines during the breeding season // Can. J. Zool. 1998. V. 76. № 3. P. 556–565.
  11. Eeva T., Lehikoinen E., Pohjalainen T. Pollution-related variation in food supply and breeding success in two hole-nesting passerines // Ecology. 1997. V. 78. P. 1120–1131.
  12. Eeva T., Ryömä M., Riihimäki J. Pollution related changes in diets of two insectivorous passerines // Oecologia. 2005. V. 145. P. 629–639.
  13. Eeva T., Helle S., Salminen J.P., Hakkarainen H. Carotenoid composition of invertebrates consumed by two insectivorous bird species // J. Chem. Ecol. 2010. V. 36. P. 608–613.
  14. Eeva T., Lehikoinen E. Rich calcium availability diminishes heavy metal toxicity in pied flycatcher // Funct. Ecol. 2004. V. 18. № 4. P. 548–553.
  15. Eeva T., Lehikoinen E., Nurmi J. Effects of ectoparasites on breeding success of great tits (Parus major) and pied flycatchers (Ficedula hypoleuca) in an air pollution gradient // Can. J. Zool. 1994. V. 72. № 4. P. 624–635.
  16. Ding J., Yang W., Wang S. et al. Does environmental metal pollution affect bird morphometry? A case study on the tree sparrow Passer montanus // Chemosphere. 2022. V. 295. Art. 133947.
  17. Albayrak T., Pekgöz A.K. Heavy metal effects on bird morphometry: A case study on the house sparrow Passer domesticus // Chemosphere. 2021. V. 276. Art. 130056.
  18. Rainio M.J., Ruuskanen S., Eeva T. Spatio-temporal variation in the body condition of female pied flycatcher (Ficedula hypoleuca) in a polluted environment // Urban Ecosystems. 2017. V. 20. P. 1035–1043.
  19. Eeva T., Ahola M., Lehikoinen E. Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area // Environ. Pollut. 2009. V. 157. № 11. P. 3126–3131.
  20. Eeva T., Lehikoinen E., Sunell C. The quality of pied flycatcher (Ficedula hypoleuca) and great tit (Parus major) females in an air pollution gradient // Ann. Zool. Fennici. 1997. V. 34. № 1. P. 61–71.
  21. Dauwe T., Janssens E., Eens M. Effects of heavy metal exposure on the condition and health of adult great tits (Parus major) // Environ. Pollut. 2006. V. 140. № 1. P. 71–78.
  22. Dauwe T., Janssens E., Pinxten R., Eens M. The reproductive success and quality of blue tits (Parus caeruleus) in a heavy metal pollution gradient // Environ. Pollut. 2005. V. 136. № 2. P. 243–251.
  23. Geens A., Dauwe T., Eens M. Does anthropogenic metal pollution affect carotenoid colouration, antioxidative capacity and physiological condition of great tits (Parus major)? // Comp. Biochem. Physiol., Pt. C: Toxicol. Pharmacol. 2009. V. 150. № 2. P. 155–163.
  24. Eeva T., Lehikoinen E. Polluted environment and cold weather induce laying gaps in great tit and pied flycatcher // Oecologia. 2010. V. 162. P. 533–539.
  25. Eeva T., Ojanen M., Räsänen O., Lehikoinen E. Empty nests in the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca) in a polluted area // Environ. Pollut. 2000. V. 109. № 2. P. 303–309.
  26. Воробейчик ЕЛ. Естественное восстановление наземных экосистем после прекращения промышленного загрязнения. 1. Обзор современного состояния исследований // Экология. 2022. № 1. С. 3–41.[Vorobeichik E.L. Natural recovery of terrestrial ecosystems after the cessation of industrial pollution: 1. A state-of-the-art review // Russ. J. Ecol. 2022. V. 53. №1. Р. 1–39. doi: 10.1134/S1067413622010118]
  27. Belskii E., Lyakhov A. Improved breeding parameters in the pied flycatcher with reduced pollutant emissions from a copper smelter // Environ. Pollut. 2022. V. 302. Art. 119089.
  28. Berglund Å.M.M., Nyholm N.E.I. Slow improvements of metal exposure, health- and breeding conditions of pied flycatchers (Ficedula hypoleuca) after decreased industrial heavy metal emissions // Sci. Total Environ. 2011. V. 409. № 20. P. 4326–4334.
  29. Eeva T., Lehikoinen E. Recovery of breeding success in wild birds // Nature. 2000. V. 403. № 6772. P. 851–852.
  30. Eeva T., Lehikoinen E. Density effect on great tit (Parus major) clutch size intensifies in a polluted environment // Oecologia. 2013. V. 173. P. 1661–1668.
  31. Eeva T., Lehikoinen E. Long-term recovery of clutch size and egg shell quality of the pied flycatcher (Ficedula hypoleuca) in a metal polluted area // Environ. Pollut. 2015. V. 201. P. 26–33.
  32. Бельский Е.А., Ляхов А.Г. Динамика населения птиц-дуплогнездников в условиях сокращения промышленных выбросов (на примере Среднеуральского медеплавильного завода) // Экология. 2021. № 4. С. 278–288. [Bel’skii E.A., Lyakhov A.G. Dynamics of the community of hole-nesting birds under conditions of reduced industrial emissions (based on the example of the Middle Ural copper smelter) // Russ. J. Ecol. 2021. V. 52. № 4. P. 296–306. doi: 10.1134/S1067413621040044]
  33. Berglund Å.M.M., Ingvarsson P.K., Danielsson H., Nyholm N.E.I. Lead exposure and biological effects in pied flycatchers (Ficedula hypoleuca) before and after the closure of a lead mine in northern Sweden // Environ. Pollut. 2010. V. 158. № 5. P. 1368–1375.
  34. Воробейчик Е.Л., Трубина М.Р., Хантемирова Е.В., Бергман И.Е. Многолетняя динамика лесной растительности в период сокращения выбросов медеплавильного завода // Экология. 2014. № 6. C. 448–458. [Vorobeichik E.L., Trubina M.R., Khantemirova E.V., Bergman I.E. Long-term dynamic of forest vegetation after reduction of copper smelter emissions // Russ. J. Ecol. 2014. V. 45. № 6. P. 498–507. doi: 10.1134/S1067413614060150]
  35. Lundberg A., Alatalo, R.V. The pied flycatcher. London: T. and A.D. Poyser, 1992.
  36. Jenni L., Winkler R. Moult and ageing of european passerines. London: Acad. Press, 1994. 225 p.
  37. Drost R. Über das Brutkleid männlicher Trauerfliegenschnäpper, Muscicapa hypoleuca // Vögelzug. 1936. V. 6. P. 179–186.
  38. Артемьев А.В. Популяционная экология мухоловки-пеструшки в северной зоне ареала. М.: Наука, 2008. 267 с.
  39. Belskii E., Belskaya E. Trophic match/mismatch and reproduction of the pied flycatcher Ficedula hypoleuca in a metal-polluted area // Environ. Pollut. 2021. V. 276. Art. 116754.
  40. Van Noordwijk A.J., McCleery R.H., Perrins C.M. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature // J. Anim. Ecol. 1995. V. 64. № 4. P. 451–458.
  41. Visser M.E., Holleman L.J.M., Gienapp P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird // Oecologia. 2006.V. 147. № 1. P. 164–172.
  42. Freed L.A. Loss of mass in breeding wrens: stress or adaptation? // Ecology. 1981. V. 62. № 5. P. 1179–1186.
  43. Norberg R.A. Temporary weight decrease in breeding birds may result in more fledged young // Am. Nat. 1981. V. 118. № 6. P. 838–850.
  44. Slagsvold T., Johansen M.A. Mass loss in female pied flycatchers Ficedula hypoleuca during late incubation: supplementation fails to support the reproductive stress hypothesis // Ardea. 1998. V. 86. № 2. P. 203–211.
  45. Lundberg A., Alatalo R.V., Carlson A., Ulfstrand S. Biometry, habitat distribution and breeding success in the pied flycatcher Ficedula hypoleuca // Ornis Scand. 1981. V. 12. P. 68–79.
  46. Nager R.G., van Noordwijk A.J. Proximate and ultimate aspects of phenotypic plasticity in timing of great tit breeding in a heterogeneous environment // Am. Nat. 1995. V. 146. P. 455–474.
  47. Ojanen M. The relation between spring migration and onset of breeding in the pied flycatcher Ficedula hypoleuca in northern Finland // Ann. Zool. Fennici. 1984. V. 21. № 3. P. 205–208.
  48. Sandberg R. Fat reserves of migrating passerines at arrival on the breeding grounds in Swedish Lapland // Ibis. 1996. V. 138. № 3. P. 514–524.
  49. Артемьев А.В. Совмещение линьки и гнездования у птиц дальних мигрантов: основные закономерности хода смены оперения у мухоловки-пеструшки, Ficedula hypoleuca (Passeriformes, Muscicapidae), в Карелии // Зоол. журн. 2004. Т. 83. Вып. 9. С. 1127–1137.
  50. Fay R., Ravussin P.A., Arrigo D. et al. Age-specific reproduction in female pied flycatchers: Evidence for asynchronous aging // Oecologia. 2021. V. 196. № 3. P. 723–734.
  51. Куранов Б.Д. Гнездовая биология мухоловки-пеструшки (Ficedula hypoleuca, Passeriformes, Muscicapidae) в юго-восточной части ареала // Зоол. журн. 2018. Т. 97. Вып. 3. С. 321–336.
  52. Forslund P., Pärt T. Age and reproduction in birds — hypotheses and tests // Trends Ecol. Evol. 1995. V. 10. № 9. P. 374–378.
  53. Askenmo C. Clutch size flexibility in the pied flycatcher Ficedula hypoleuca // Ardea. 1982.V. 70. № 2. P. 189–196.
  54. Silverin B. Reproductive effort, as expressed in body and organ weights, in the pied flycatcher // Ornis Scand. 1981. V. 12. № 2. P. 133–139.
  55. Smith H.G., Källander H., Hultman J., Sanzén B. Female nutritional state affects the rate of male incubation feeding in the pied flycatcher Ficedula hypoleuca // Behav. Ecol. Sociobiol. 1989. V. 24. P. 417–420.
  56. Hillstrom L. Body mass reduction during reproduction in the pied flycatcher Ficedula hypoleuca: physiological stress or adaptation for lowered costs of locomotor? // Funct. Ecol. 1995. V. 9. № 6. P. 807–817.
  57. Van Balen J.H. A comparative study of the breeding ecology of the great tit Parus major in different habitats // Ardea. 1973. V. 55. № 1-2. P. 1–93.
  58. Ильина Т.А., Керимов А.Б., Загубиженко М.В., Максимов Г.В. Сезонная динамика биомассы листогрызущих насекомых и ее влияние на содержание каротиноидов в перьях птенцов большой синицы // Экология. 2013. № 6. С. 454–454. [Ilyina T.A., Kerimov A.B., Zagubizhenko M.V., Maksimov G.V. Seasonal dynamics of leaf-eating insects biomass and its influence on carotenoid content in feathers of Great Tit nestlings // Russ. J. Ecol. 2013. V. 44. № 6. P. 507–514. doi: 10.7868/S0367059713060073]
  59. Belskii E., Belskaya E. Thermal effect of the Middle Ural copper smelter (Russia) and growth of birch leaves // Environ. Sci. Pollut. Res. 2021. V. 28. P. 26064–26072.
  60. Kozlov M.V., Eränen J.K., Zverev V.E. Budburst phenology of white birch in industrially polluted areas // Environ. Pollut. 2007. V. 148. P. 125–131.
  61. Siikamäki P. Limitation of reproductive success by food availability and breeding time in pied flycatchers // Ecology. 1998. V. 79. № 5. P. 1789–1796.
  62. Sokolov L.V. Spring ambient temperature as an important factor controlling timing of arrival, breeding, post-fledging dispersal and breeding success of pied flycatcher Ficedula hypoleuca in Eastern Baltic // Avian Ecol. Behav. 2000. V. 5. P. 79–104.
  63. Артемьев А.В. Влияние погоды на биологию гнездования мухоловки-пеструшки, Ficedula hypoleuca (Passeriformes, Muscicapidae), в Карелии // Зоол. журн. 2002. Т. 81. Вып. 7. С. 841–849.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of sites with artificial nests in the vicinity of SUMZ: 1 – settlements; 2 – highway; 3 – river; 4 – SUMZ; 5 – sites (circles – sites in deciduous forest, triangles – sites in coniferous forest); unpainted, gray and black icons – background, buffer and impact zones, respectively.

Download (88KB)
3. Fig. 2. Dependence of the body weight of females (a) and males (b) of the pied flycatcher on the age of the chicks. The day of hatching is taken as 0: to the left of zero is the stage of incubation of the clutch, to the right is the stage of feeding the chicks.

Download (147KB)
4. Fig. 3. Dependence of the ISO of females at the incubation and feeding stage on the dates of the start of laying (a) and hatching of chicks (b). Here and in Figs. 4–6: 1 – young; 2 – older individuals; shaded area – 95% CI.

Download (254KB)
5. Fig. 4. Dependence of the ISO of females at the stage of incubation and feeding on the size of the clutch (a) and brood (b).

Download (216KB)
6. Fig. 5. Dependence of the ISO of females at the incubation stage (a) and feeding (b) on the nesting density.

Download (215KB)
7. Fig. 6. Dependence of ISO of females at the incubation stage (a) and feeding (b) on air temperature 10 days before capture.

Download (239KB)

Copyright (c) 2024 Russian Academy of Sciences