Sound Waves in a Medium with Resonant Inclusions of a Dipole Type

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An elastic medium with inclusions that are small compared to the sound wavelength and differ in density is considered. If the inclusions are resonators that respond equally to the influence of waves coming from different directions, then the effective density of the medium in a certain frequency band becomes negative. If the direction of the dipole moment of the resonators is fixed, then the medium with inclusions has an anisotropic effective density. The Helmholtz equation for such a medium was obtained, and the field of a point source was studied.

Sobre autores

N. G. Kanev

Acoustic Institute named after. Acad. N.N. Andreev; Moscow State Technical University named after. N.E. Bauman

Autor responsável pela correspondência
Email: nikolay.kanev@mail.ru
Rússia, Moscow; Moscow

M. Mironov

Acoustic Institute named after. Acad. N.N. Andreev; Moscow State Technical University named after. N.E. Bauman

Email: nikolay.kanev@mail.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Rayleigh L. The theory of anomal dispersion // Phil. Mag. 1899. V. 48. P. 151.
  2. Sellmeier W. Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien // Annal. Phys. Chem. 1872. V. 223. P. 386–403.
  3. Сивухин Д.В. Оптика. М.: Наука, 1985. 752 с.
  4. Веселаго В.Г. Волны в метаматериалах: их роль в современной физике // Успехи физ. наук. 2011. Т. 181. № 11. С. 1201−1205.
  5. Бобровницкий Ю.И., Томилина Т.М. Поглощение звука и метаматериалы (Обзор) // Акуст. журн. 2018. Т. 64. № 5. С. 517−525.
  6. Foldy L.L. Multiple scattering of waves // Phys. Rev. 1945. V. 67. № 3/4. P. 107−119.
  7. Ma G., Sheng P. Acoustic metamaterials: From local resonances to broad horizons // Sci. Adv. 2016. V. 2. № 2. P. 1501595.
  8. Li J., Wen X., Sheng P. Acoustic metamaterials // J. Appl. Phys. 2021. V. 129. P. 171103.
  9. Gao N., Zhang Z., Deng J., Guo X., Cheng B., Hou H. Acoustic metamaterials for noise reduction: A review // Adv. Mater. Technol. 2022. V. 7. № 6. P. e2100698.
  10. Zhang J., Hu B., Wang S. Review and perspective on acoustic metamaterials: From fundamentals to applications // Appl. Phys. Lett. 2023. V. 123. P. 010502.
  11. Буров В.А., Дмитриев К.В., Сергеев С.Н. Акустические «дважды отрицательные» среды // Акуст. журн. 2009. Т. 55. № 3. С. 292−306.
  12. Федотовский В.С. Пористая среда как акустический метаматериал с отрицательными инерционными и упругими свойствами // Акуст. журн. 2018. Т. 64. № 5. С. 547−553.
  13. Канев Н.Г., Миронов М.А. Дипольный резонансный рассеиватель звука // Акуст. журн. 2003. Т. 49. № 3. С. 372−375.
  14. Канев Н.Г. Тангенциальный импеданс // Акуст. журн. 2023. Т. 69. № 2. C. 270−274.
  15. Исакович М.А. Общая акустика. М.: Наука, 1973.
  16. Mironov M. The dipole resonator and dipole waveguide insulator in dense liquid medium // Acoustics. 2022. V. 4. № 2. P. 469−478.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2024