Event-related brain potentials when comparing visual stimuli – words and pictures

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The goal of this paper was studying neurophysiological processes in the brain during presentation of visual stimuli (printed words and pictures). 84 participants took part in the investigation. The article presents the results of the analysis of event related potentials (ERP) in a three-stimulus visual test. In the time interval 80-280 ms after the second stimulus, ERP components were recorded: N1O in the occipital area, and N1T and P2 in the posterior temporal lobes. The N1O, N1T, P2 waves in response to the second word-stimulus differed in amplitude and latency from the waves in response of the image-stimulus. No difference in ERP in the posterior temporal and occipital components N1O, N1T, P2 between match and mismatch conditions in words comparison was found. We infer that the operation of comparing two words is not reflected all measured ERP waves. In response to the second picture-stimulus the amplitude of the occipital and posterior temporal components N1O, N1T was greater when the stimuli matched the first stimulus. We conclude that the recorded difference wave indicates facilitation operation during the perception when the predicted signal matches the actual input signal. In summary, the modulation of the posterior temporal P2 wave in response to the second mismatched picture-stimulus in the pairs is caused by two hypothetical psychological operations: physical repetition of the stimulus, and mismatch with the image in the working memory.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Nikishena

Saint Petersburg State Pediatric Medical University of the Ministry of Health of the Russian Federation; N. Bekhtereva Institute of Human Brain RAS

Хат алмасуға жауапты Автор.
Email: nikishena@mail.ru
Ресей, St. Petersburg; St. Petersburg

V. Ponomarev

N. Bekhtereva Institute of Human Brain RAS

Email: nikishena@mail.ru
Ресей, St. Petersburg

Yu. Kropotov

N. Bekhtereva Institute of Human Brain RAS

Email: nikishena@mail.ru
Ресей, St. Petersburg

Әдебиет тізімі

  1. Baklushev M.E., Ivanitsky G.A. [Discreteness and continuity of information in consciousness] // Usp. Fiziol. Nauk. 2021. V. 52. № 1. P. 77.
  2. The Oxford handbook of event-related potential components / Eds. Luck S.J., Kappenman E.S. Oxford: Oxford University Press, 2011. 642 p.
  3. Kropotov J.D. Quantitative EEG, Event-Related Potentials and Neurotherapy. Academic Press. San Diego. USA, 2009. 600 p.
  4. Woldorff M.G., Liotti M., Seabolt M. et al. The temporal dynamics of the effects in occipital cortex of visual-spatial selective attention // Brain Res. Cogn. Brain Res. 2002. V. 15. № 1. P. 1.
  5. Ahmadi M., McDevitt E.A., Silver M.A., Mednick S.C. Perceptual learning induces changes in early and late visual evoked potentials // Vision Res. 2018. V. 152. P. 101.
  6. Joyce C., Rossion B. The face-sensitive N170 and VPP components manifest the same brain processes: The effect of reference electrode site // Clin. Neurophysiology. 2005. V. 116. № 11. P. 2613.
  7. Stahl J., Wiese H., Schweinberger S.R. Learning task affects ERP-correlates of the own-race bias, but not recognition memory performance // Neuropsychologia. 2010. V. 48. № 7. P. 2027.
  8. He J., Zheng Y., Fan L. et al. Automatic processing advantage of cartoon face in internet gaming disorder: Evidence from P100, N170, P200, and MMN // Front. Psychiatry. 2019. V. 10. P. 824.
  9. Male A.G., O'Shea R.P., Schröger E. et al. The quest for the genuine visual mismatch negativity (vMMN): Event-related potential indications of deviance detection for low-level visual features // Psychophysiology. 2020. V. 57. № 6. P. e13576.
  10. Amsel B.D., Urbach T.P., Kutas M. Alive and grasping: stable and rapid semantic access to an object category but not object graspability // Neuroimage. 2013. V. 15. № 77. P. 1.
  11. Sauseng P., Bergmann J., Wimmer H. When does the brain register deviances from standard word spellings?--An ERP study // Brain Res. Cogn. Brain Res. 2004. V. 20. № 3. P. 529.
  12. Amora K.K., Tretow A., Verwimp C. et al. Typical and atypical development of visual expertise for print as indexed by the Visual Word N1 (N170w): A systematic review // Front. Neurosci. 2022. V. 16. P. 898800.
  13. Galperina E.I., Nagornova J.V., Shemyakina N.V., Kornev A.N. Psychophysiological mechanisms of the initial stage of learning to red. Part I // Human Physiology. 2022. V. 48. № 2. P. 194.
  14. Nikishena I.S., Ponomarev V.A., Kropotov J.D. Event-related potentials of the human brain during the comparison of visual stimuli // Human Physiology. 2023. V. 49. № 3. P. 264.
  15. Nikishena I.S., Ponomarev V.A., Kropotov Y.D. Event-related potentials in audio-visual cross-modal test in comparison of word pairs // Human Physiology. 2021. V. 47. № 4. P. 459.
  16. Kropotov Y.D., Ponomarev V.A., Pronina M.V., Polyakova N.V. Effects of repetition and stimulus mismatch in sensory visual components of event-related potentials // Human Physiology. 2019. V. 45. № 4. P. 349.
  17. Vigário R.N. Extraction of ocular artifacts from EEG using independent component analysis // Electroencephalogr. Clin. Neurophysiol. 1997. V. 103. № 3. P. 395.
  18. Dong L., Li F., Liu Q. et al. MATLAB toolboxes for Reference Electrode Standardization Technique (REST) of scalp EEG // Front. Neurosci. 2017. V. 11. P. 601.
  19. Hu S., Lai Y., Valdes-Sosa P.A. et al. How do reference montage and electrodes setup affect the measured scalp EEG potentials? // J. Neural. Eng. 2018. V. 15. № 2. P. 026013.
  20. Perrin F., Pernier J., Bertrand O., Echallier J.F. Spherical splines for scalp potential and current density mapping // Electroencephalogr. Clin. Neurophysiol. 1989. V. 72. № 2. P. 184.
  21. Kayser J., Tenke C.E. Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks // Clin. Neurophysiol. 2006. V. 117. P. 348.
  22. Maris E., Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data // J. Neurosci. Methods. 2007. V. 164. № 1. P. 177.
  23. Pernet C.R., Latinus M., Nichols T.E., Rousselet G.A. Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study // J. Neurosci. Methods. 2015. V. 250. P. 85.
  24. Tartaglia E.M., Mongillo G., Brunel N. On the relationship between persistent delay activity, repetition enhancement and priming // Front. Psychol. 2015. V. 5. P. 1590.
  25. Caharel S., Rossion B. The N170 is sensitive to long-term (personal) familiarity of a face identity // Neuroscience. 2021. V. 15. P. 244.
  26. Rossion B., Jacquesm C. The N170: Understanding the time course of face perception in the human brain / The Oxford handbook of event-related potential components // Eds. Luck S.J., Kappenman E.S. Oxford University Press, 2012. P. 115.
  27. Prieto E. A., Caharel S., Henson R., Rossion B. Early (N170/M170) face-sensitivity despite right lateral occipital brain damage in acquired prosopagnosia // Front. Hum. Neurosci. 2011. V. 5. P. 138.
  28. Thierry G., Martin C. D., Downing P.E., Pegna A.J. Is the N170 sensitive to the human face or to several intertwined perceptual and conceptual factors? // Nat. Neurosci. 2007. V. 10. P. 802.
  29. Thierry G., Martin C., Downing P. et al. Controlling for interstimulus perceptual variance abolishes N170 face selectivity // Nat. Neurosci. 2007. V. 10. № 4. P. 505.
  30. Tanaka H. Face-sensitive P1 and N170 components are related to the perception of two-dimensional and three-dimensional objects // Neuroreport. 2018. V. 29. № 7. P. 583.
  31. Jones T., Hadley H., Cataldo A.M. et al. Neural and behavioral effects of subordinate-level training of novel objects across manipulations of color and spatial frequency // Eur. J. Neurosci. 2020. V. 52. № 11. P. 4468.
  32. Nan W., Liu Y., Zeng X. et al. The spatiotemporal characteristics of N170s for faces and words: A meta-analysis study // Psych. J. 2022. V. 11. № 1. P. 5.
  33. Fu S., Feng C., Guo S. et al. Neural adaptation provides evidence for categorical differences in processing of faces and Chinese characters: An ERP study of the N170 // PLoS One. 2012. V. 7. № 7. P. e41103.
  34. Enge A., Süß F., Abdel Rahman R. Instant effects of semantic information on visual perception // J. Neurosci. 2023. V. 43. № 26. P. 4896.
  35. Clarke A., Pell P.J., Ranganath C., Tyler L.K. Learning warps object representations in the ventral temporal cortex // J. Cogn. Neurosci. 2016. V. 28. № 7. P. 1010.
  36. Kropotov J.D., Ponomarev V.A. Differentiation of neuronal operations in latent components of event-related potentials in delayed match-to-sample tasks // Psychophysiology. 2015. V. 52. № 6. P. 826.
  37. Kropotov J.D., Ponomarev V.A., Pronina M., Jäncke L. Functional indexes of reactive cognitive control: ERPs in cued go/no-go tasks // Psychophysiology. 2017. V. 54. № 12. P. 1899.
  38. Kimura M. Visual mismatch negativity and unintentional temporal-context-based prediction in vision // Int. J. Psychophysiol. 2012. V. 83. № 2. P. 144.
  39. Freunberger R., Klimesch W., Doppelmayr M., Höller Y. Visual P2 component is related to theta phase-locking // Neurosci. Lett. 2007. V. 426. № 3. P. 181.
  40. Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science // Behav. Brain Sci. 2013. V. 36. № 3. P. 181.
  41. den Ouden C., Zhou A., Mepani V. et al. Stimulus expectations do not modulate visual event-related potentials in probabilistic cueing designs// Neuroimage. 2023. V. 280. P. 120347.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic representation of the test structure. The background of the word stimuli is gray for illustration purposes, the background of all stimuli was the same. Other explanations are in the text.

Жүктеу (508KB)
3. Fig. 2. The group-averaged event-related potentials (ERPs) relative to the average potential of the reference ear electrodes in the picture-to-picture test (A), in the word-to-word test (B). ERP graphs: the abscissa axis shows time, ms, the ordinate axis shows the potential value, μV. The black rectangle under each abscissa axis on a straight line indicates the cluster boundaries for each channel, the height of the bar corresponds to the statistical significance of the differences in the signal in the cluster (p < 0.001). In the graphs, the black line denotes the ERPs for coincidence of stimuli, the gray line denotes the ERPs for mismatch of stimuli, the dotted line is the difference curve of potentials for the conditions of mismatch and coincidence of stimuli. The arrows on the graphs indicate the component of the ERP to which the topogram belongs. On the topograms, small circles inside the large one topographically correspond to the position of the electrodes. Small circles filled with black indicate electrodes belonging to the cluster. Next to the graphs in A are the topograms of the distribution of difference potentials for two conditions ("coincidence" and "miscoincidence"); B - topograms of the ERP distribution in the "coincidence" condition.

Жүктеу (1MB)
4. Fig. 3. Group-averaged event-related potentials (ERP) for the EEG transformed to the density of current sources CSD in the "picture-picture" test (A), in the "word-word" test (B). On the ordinate axis is the value of the density of current sources, μV/cm2. Other designations see Fig. 2.

Жүктеу (1MB)
5. Fig. 4. Group-averaged event-related potentials (ERPs) for EEG transformed to current source density, CSD, in four tests with stimulus mismatch (A) and stimulus coincidence (B). ERP graphs: abscissa – time, ms, ordinate – current source density, μV/cm2. In the graphs, the thick black line denotes the ERPs in test II, the dotted line – in test WI, the thin black line – in test IW, and the gray line – in test WW. Under each abscissa axis, on straight lines, the black rectangles indicate the time intervals in which reliable differences are recorded for each pair of tests; paired arrows indicate the differences in the tests for the occipital negative component and the posterior temporal component.

Жүктеу (1MB)

© Russian Academy of Sciences, 2025