System mechanisms of urine formation and transport. Message 1. Features of the storage-evacuation function of the bladder in young people with different urination rhythms
- Autores: Sapozhenkova E.V.1, Kolpakov V.V.1, Berdichevsky V.B.1, Tomilova E.A.1
-
Afiliações:
- Tyumen State Medical University
- Edição: Volume 51, Nº 1 (2025)
- Páginas: 97-109
- Seção: Articles
- URL: https://ter-arkhiv.ru/0131-1646/article/view/685313
- DOI: https://doi.org/10.31857/S0131164625010092
- EDN: https://elibrary.ru/VMNHQK
- ID: 685313
Citar
Resumo
The relevance of the study is determined by the high prevalence of symptoms of the lower urinary tract, as well as the search for new intersystem relationships in the implementation of the accumulative evacuation function of the bladder using modern diagnostic methods and highlighting criteria for early diagnosis of these disorders. Based on the results of current preventive examinations, including the recommendations of the American Continence Society (ISC), urination diaries were filled out for 3 days, a survey of lower urinary tract symptoms on the I-PSS scale, and quality of life assessments (QOL). Three groups of young males had been divided – with normal (183 people, average age 27.3 ± ± 1.5 years), borderline (52 people, average age 26.8 ± 1.7 years) and increased urination rhythm (total 53 people, average age 28.1 ± 1.8 years). Additionally, the individual volume of habitual physical activity – HPA (mobile application on the Android and Apple platforms) was assessed. Combined positron emission and computed tomography (PET/CT) with a total mathematical calculation of the standardized capture level of Maximum Standardized Uptake Value (SUVmax), the maximum indicator of the degree of accumulation of radiopharmaceuticals in the selected area of interest by various brain zones 18F-FDG, 11C-methionine and 11C-choline was performed in different functional phases of work bladder (filling, urination and after emptying) on a Biograph machine (Siemens, Germany). As a result of the studies, quantitative and qualitative characteristics were given to the energy metabolism of the brain in the process of implementing the storage and evacuation functions of the bladder in young people with normal, borderline and frequent urination rhythms. The consistent functional activity of the most significant sections (anterior and posterior cingulate cortex, paracentral lobule, thalamus, insula) in different phases of urination has been established, and on this basis a standard model of the central regulation of the storage-evacuation function of the bladder has been proposed.
Palavras-chave
Texto integral

Sobre autores
E. Sapozhenkova
Tyumen State Medical University
Autor responsável pela correspondência
Email: Ekaterina_chibulaeva@mail.ru
Rússia, Tyumen
V. Kolpakov
Tyumen State Medical University
Email: Ekaterina_chibulaeva@mail.ru
Rússia, Tyumen
V. Berdichevsky
Tyumen State Medical University
Email: Ekaterina_chibulaeva@mail.ru
Rússia, Tyumen
E. Tomilova
Tyumen State Medical University
Email: Ekaterina_chibulaeva@mail.ru
Rússia, Tyumen
Bibliografia
- Natochin Yu.V. [Kidney: An Organ of Excretion or Preservation?] // Usp. Fiz. Nauk 2019. V. 50. № 4. P. 14.
- Pushkar D.Yu., Gadzhieva Z.K., Kasyan G.R. et al. [Good urodynamic practice: Consensus on the terminology] // Urologiia. 2019. № 1. P. 131.
- Kadykov A.S., Shvarts P.G., Fedin P.A. et al. [The study of diagnostic capabilities of somatosensory evoked potentials in patients with neurogenic urinary retention] // Zh. Nevrol. Psikhiatr. Im. S.S. Korsakova. 2019. № 119(6). P. 60.
- Pang D., Gao Y., Liao L., Ying X. Brain functional network alterations caused by a strong desire to void in healthy adults: Agraph theory analysis study // Neurourol. Urodyn. 2020. V. 39. № 7. P. 1966.
- Pang D., Gao Y., Liao L. Responses of functional brain networks to bladder control in healthy adults: A study using regional homogeneity combined with independent component analysis methods // Int. Urol. Nephrol. 2021. V. 53. № 5. P. 883.
- Pang D., Gao Y., Liao L. Functional brain imaging and central control of the bladder in health and disease // Front. Physiol. 2022. V. 13. P. 914963.
- Pang D., Liao L., Chen G., Wang Y. Sacral neuromodulation improves abnormal prefrontal brain activity in patients with overactive bladder: A possible central mechanism // J. Urol. 2022. V. 207. № 6. P. 1256.
- Blok B.F., Sturms L.M., Holstege G. Brain activation during micturition in women // Brain. 1998. V. 121. Pt. 11. P. 2033.
- Blok B.F., Willemsen A.T., Holstege G. A PET study on brain control of micturition in humans // Brain. 1997. V. 120. Pt. 1. P. 111.
- Kovalev G.V., Shkarupa D.D., Zaytseva A.O. et al. [Characteristics of the neural regulation of the lower urinary tract as a cause of the development of an overactive bladder: Current state of the problem] // Urologiia. 2020. № 4. P. 165.
- Sorokin Yu.N. [Neurogenic dysfunction of the lower urinary tract (neurogenic bladder)] // Russ. Neurol. J. 2021. V. 26. № 5. P. 61.
- Kasyan G.R., Stroganov R.V., Hodyreva L.A. et al. [Urodynamic studies in functional urology] / Methodological recommendations № 29. M.: NIIOZMM, 2020. 39 p.
- Griffiths D., Tadic S.D. Bladder control, urgency, and urge incontinence: Evidence from functional brain imaging // Neurourol. Urodyn. 2008. V. 27. № 6. P. 466.
- Kitta T., Mitsui T., Kanno Y. et al. Brain-bladder control network: The unsolved 21st century urological mystery // Int. J. Urol. 2015. V. 22. № 4. P. 342.
- Sakakibara R., Tsunoyama K., Takahashi O. et al. Real-time measurement of oxyhemoglobin concentration changes in the frontal micturition area: An fNIRS study // Neurourol. Urodyn. 2010. V. 29. № 5. P. 757.
- Griffiths D. Functional imaging of structures involved in neural control of the lower urinary tract // Handb Clin. Neurol. 2015. V. 130. P. 121.
- Griffiths D. Neural control of micturition in humans: A working model // Nat. Rev. Urol. 2015. V. 12. № 12. P. 695.
- Groat W.C., Griffiths D., Yoshimura N. Neural control of the lower urinary tract // Compr. Physiol. 2015. V. 5. № 1. P. 327.
- Aleksandrov V.G., Gubarevich E.A., Kokurina T.N. et al. Central autonomic network // Human Physiology. 2022. V. 48. № 6. P. 759.
- Ketai L.H., Komesu Y.M., Dodd A.B. et al. Urgency urinary incontinence and the interoceptive network: A functional magnetic resonance imaging study // Am. J. Obstet. Gynecol. 2016. V. 215. № 4. P. 449e1.
- Zuo L., Zhou Y., Wang S. et al. Abnormal brain functional connectivity strength in the overactive bladder syndrome: A resting-state fMRI study // Urology. 2019. V. 131. P. 64.
- Sugaya K., Nishijima S., Miyazato M., Ogawa Y. Central nervous control of micturition and urine // J. Smooth Muscle Res. 2005. V. 41. № 3. P. 117.
- Pronin I.N., Khokhlova E.V., Konakova T.A. et al. [Positron emission tomography with 11C-methionine in primary brain tumor diagnosis] // Zh. Nevrol. Psikhiatr. Im. S.S. Korsakova. 2020. № 120(8). P. 51.
- Smolyarchuk M.A., Kireeva E.D., Ryzhov S.A. et al. [Recommendations for conducting and describing studies using positron emission tomography combined with computed tomography, conducted at the expense of the Moscow City Compulsory Medical Insurance Fund / Methodological recommendations]. 2nd edition, suppl. The series “Best practices of radiation and instrumental diagnostics”. Issue 87. M.: GBUZ “NPCC DiT DZM”, 2021. 80 p.
- Stackhouse T.L., Mishra A. Neurovascular coupling in development and disease: Focus on astrocytes // Front. Cell Dev. Biol. 2021. V. 9. P. 702832.
- Kostenikov N.A., Tyutin L.A., Fadeev N.P. et al. [Differential diagnosis of brain gliomas by positron emission tomography with various radiopharmaceuticals] // J. Radiol. Nucl. Med. 2014. № 5. P. 13.
- Berdichevsky V.B., Berdichevsky B.A., Barashin D.A. et al. [Static PET/CT kidney scintigraphy] // Med. Sci. Educ. Ural. 2019. V. 20. № 1(97). P. 111.
- Zykov E.M., Pozdnyakov A.V., Kostenikov N.A. [Rational use of PET and PET/CT in oncology] // Pract. Oncol. 2014. V. 15. № 1. P. 31.
- Ivashchenko I.M., Shnyakin P.G., Kataeva A.A. et al. [Positron emission tomography capabilities in the diagnosis of malignant brain tumors (literature review)] // In the World of Scientific Discoveries. 2018. № 4. P. 72.
- Pushkar D.Yu., Kasyan G.R. [Functional urology and urodynamics]. Moscow: GEOTAR-Media, 2014. 376 p.
- Skvortsova T.Y., Gurchin A.F., Savintseva Z.I. C-methionine PET in assessment of brain lesions in patients with glial tumors after combined treatment // Zh. Vopr. Neirokhir. Im. N.N. Burdenko. 2019. № 83(2). P. 27.
- Kolpakov V.V., Bespalova T.V., Tomilova E.A. et al. Systemic analysis: Individual typological characteristics of the human body // Human Physiology. 2011. V. 37. № 6. P. 738.
- Kolpakov V.V., Tomilova E.A., Larkina N.Y. et al. Chronobiological assessment of habitual physical activity in humans in Western Siberia // Human Physiology. 2016. V. 42. № 2. P. 203.
- Sudakov S.K. [Physiological mechanisms of anticipating the future result of purposeful behavior] // Ross. Fiziol. Zh. Im. I.M. Sechenova. 2019. V. 105. № 1. P. 36.
- Browning K.N., Carson K.E. Central neurocircuits regulating food intake in response to gut inputs – Preclinical evidence // Nutrients. 2021. V. 13. № 3. P. 908.
- Lamotte G., Shouman K., Benarroch E.E. Stress and central autonomic network // Auton. Neurosci. 2021. V. 235. P. 102870.
- Jarrahi B., Mantini D., Balsters J.H. et al. Differential functional brain network connectivity during visceral interoception as revealed by independent component analysis of fMRI TIME-series // Hum. Brain Mapp. 2015. V. 36. № 11. P. 4438.
- Torta D.M., Costa T., Duca S. et al. Parcellation of the cingulate cortex at rest and during tasks: A meta-analytic clustering and experimental study // Front. Hum. Neurosci. 2013. V. 7. P. 275.
- Jarrahi B., Mantini D., Mehnert U., Kollias S. Exploring influence of subliminal interoception on whole-brain functional network connectivity dynamics // Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015. V. 2015. P. 670.
- Nour S., Svarer C., Kristensen J.K. et al. Cerebral activation during micturition in normal men // Brain. 2000. V. 123. Pt. 4. P. 781.
Arquivos suplementares
