Assessment of the Possibility of Excluding Secondary Heating of the Inflow During the Warm Period in Modern Climatic Conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The subject of the study is the dependence on the required indoor air temperature and the accepted inflow temperature for a minimum heat and humidity ratio in the room, in which secondary heating of inflow can be excluded. The purpose of the study is to obtain an analytical expression of this dependence, which allows an engineering assessment of the possibility of eliminating secondary heating in the process of designing air conditioning systems without the use of graphical constructions. The objective of the study is to represent an adequate flow processing scheme on the Id diagram, identify the main factors affecting the minimum heat and humidity ratio in the room and obtain the necessary numerical coefficients in formulas linking the desired and initial parameters. Research results. An analytical dependence is obtained that allows calculating the minimum possible value of the heat and humidity ratio in a room in which secondary heating is not required, and only cooling of the inflow with drying in a surface air cooler is sufficient if it has a bypass channel. The presentation is illustrated with numerical and graphical examples.

Texto integral

Acesso é fechado

Sobre autores

O. Samarin

National Research Moscow State University of Civil Engineering

Autor responsável pela correspondência
Email: samarin-oleg@mail.ru

Candidate of Sciences (Engineering)

Rússia, 26, Yaroslavskoe Highway, Moscow, 129337

Bibliografia

  1. Малявина Е.Г., Маликова О.Ю., Фам В.Л. Метод выбора расчетных температуры и энтальпии наружного воздуха в теплый период года // АВОК. 2018. № 3. С. 60–69.
  2. Malyavina E.G., Malikova O.Yu., Fam V.L. Method for selection of design temperatures and outside air enthalpy during warm period of the year. AVOK. 2018. No. 3, pp. 60–69. (In Russian).
  3. Belussi L., Barozzi B., Bellazzi A., Danza L., Devitofrancesco A., Ghellere M., Guazzi G., Meroni I., Salamone F., Scamoni F., Scrosati C., Fanciulli C. A review of performance of zero energy buildings and energy efficiency solutions. Journal of Building Engineering. 2019. Vol. 25. 100772. https://doi.org/10.1016/j.jobe.2019.100772
  4. Zhiwei Wang, Yao Chen, Man Zhou, Jin Wu, Menglu Zhang. A clustering method with target supervision for the thermal climate division of residential buildings in the hot summer and cold winter area of China. Journal of Building Engineering. 2021. Vol. 43. 103156. https://doi.org/10.1016/j.jobe.2021.103156
  5. Ryzhov A., Ouerdane H., Gryazina E., Bischi A., Turitsyn K. Model predictive control of indoor microclimate: existing building stock comfort improvement. Energy Conversion and Management. 2019. Vol. 179, pp. 219–228. https://doi.org/10.1016/j.enconman.2018.10.046
  6. Sha H., Xu P., Yang Z., Chen Y., Tang J. Overview of computational intelligence for building energy system design. Renewable and Sustainable Energy Reviews. 2019. Vol. 108, pp. 76–90. https://doi.org/10.1016/j.rser.2019.03.018
  7. Malyavina E.G., Malikova O.Yu. Comparison of the completeness of the climate probability-statistic model and the reference year model. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 365. Iss. 2. 022009. doi: 10.1088/1757-899X/365/2/022009
  8. Малявина Е.Г., Маликова О.Ю. Влияние расчетных параметров наружного воздуха на энергетические показатели систем кондиционирования воздуха // Энергосбережение и водоподготовка. 2022. № 2. С. 12–16.
  9. Malyavina E.G, Malikova O.Yu. Influence of calculated parameters of outdoor air on the energy performance of air conditioning systems. Energosberezheniye i vodopodgotovka. 2022. No. 2, pp. 12–16. (In Russian).
  10. Малявина Е.Г., Маликова О.Ю. Сравнение исходной климатической информации для расчетов сезонного энергопотребления аппаратами кондиционирования воздуха // Известия вузов. Строительство. 2022. № 10. С. 37–45.
  11. Malyavina E.G, Malikova O.Yu. Comparison of initial climatic information for calculations of seasonal energy consumption by air conditioning units. Izvestiya of higher educational institutions. Construction. 2022. No. 10, pp. 37–45. (In Russian).
  12. Винский П.В., Самарин О.Д. Анализ Постановления Правительства РФ от 27 мая 2022 года № 963 // СОК. 2023. № 2. С. 53–57.
  13. Vinskii P.V., Samarin O.D. Analysis of the Decree of the Government of the Russian Federation № 963 dated May 27, 2022. SOK. 2023. No. 2, pp. 53–57. (In Russian).
  14. Малявина Е.Г., Самарин О.Д. Строительная теплофизика и микроклимат зданий. 2-е изд. М.: Изд-во МИСИ–МГСУ, 2022. 288 с.
  15. Malyavina E.G., Samarin O.D. Stroitel’naya teplofizika i mikroklimat zdanij [Building thermal physics and building microclimate]. Moscow: MGSU-MISI Publishers. 2022. 288 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Diagram of the inflow cooling process with its drying and bypass during the warm season in Moscow

Baixar (1MB)

Declaração de direitos autorais © Advertising publishing company "STROYMATERIALY", 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies