Translational medicine in Russian cardiology: a new stage or repetition of the past?


Cite item

Full Text

Abstract

The brief review gives the experience in using the concept of translational medicine in the practical activities of the Russian Cardiology Research and Production Complex in the past 25 years of its existence. It outlines the possible ways of developing this area in Russian medicine to solve crucial scientific and practical tasks.

References

  1. лет — ФГБУ Российский кардиологический научно-производственный комплекс Министерства здравоохранения Российской Федерации. М.: КомплектСервис; 2015.
  2. Burke JD, Pincus HA, Pardes H. The clinician-researcher in psychiatry. Am J Psychiatry. 1986;143(8):968-975. doi: 10.1176/ajp.143.8.968
  3. Ипатова О.М., Медведева Н.В., Арчаков А.И., Григорьев А.И. Трансляционная медицина — путь от фундаментальной биомедицинской науки в здравоохранение. Вестник РАМН. 2012;6:57-65.
  4. Пальцев М.А., Белушкина Н.Н. Трансляционная медицина — новый этап развития молекулярной медицины. Молекулярная медицина. 2012;4:3-9.
  5. Feldman A. Does Academic Culture Support Translational Research? Clin Translat Scie. 2008;1(2):87-88 doi: 10.1111/j.1752-8062.2008.00046.x
  6. Sarkar I. Biomedical informatics and translational medicine. J Translational Med. 2010;8(1):22. doi: 10.1186/1479-5876-8-22
  7. Feldman A, Koch W, Force T. Developing Strategies to Link Basic Cardiovascular Sciences with Clinical Drug Development: Another Opportunity for Translational Sciences. Clin Pharmacol Ther. 2007;81(6):887-892. doi: 10.1038/sj.clpt.6100160
  8. Birmingham K. What is translational research? Nature Med. 2002;8(7):647-650. doi: 10.1038/nm0702-647
  9. Lewis B, Burge C, Bartel D. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell. 2005;120(1):15-20. doi: 10.1016/j.cell.2004.12.035
  10. Iaconetti C, Gareri C, Polimeni A, Indolfi C. Non-Coding RNAs: The «Dark Matter» of Cardiovascular Pathophysiology. IJMS. 2013;14(10):19987-20018. doi: 10.3390/ijms141019987
  11. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang C. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997-1006. doi: 10.1038/cr.2008.282
  12. Weber J, Baxter D, Zhang S, Huang D, How Huang K, Jen Lee M, Galas D, Wang K. The MicroRNA Spectrum in 12 Body Fluids. Clin Chem. 2010;56(11):1733-1741. doi: 10.1373/clinchem.2010.147405
  13. Кочетов А.Г., Жиров И.В., Масенко В.П., Гимадиев Р.Р., Лянг О.В., Терещенко С.Н. Перспективы применения микроРНК в диагностике и терапии сердечной недостаточности. Кардиологический вестник. 2014;2:62-67.
  14. Кочетов А.Г., Лянг О.В., Гимадиев Р.Р., Жиров И.В., Скворцов А.А., Засеева А.В., Босых Е.Г., Масенко В.П., Терещенко С.Н. Экспрессия циркулирующих микроРНК при развитии хронической сердечной недостаточности у больных с сердечно-сосудистыми заболеваниями. Лабораторная служба. 2016;1:26-32. doi: 10.17116/labs20165126-32
  15. Roy S, Khanna S, Hussain S, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo G, Sen C. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009;82(1):21-29. doi: 10.1093/cvr/cvp015
  16. Tijsen A, Creemers E, Moerland P, de Windt L, van der Wal A, Kok W, Pinto Y. MiR423-5p As a Circulating Biomarker for Heart Failure. Circulation Res. 2010;106(6):1035-1039. doi: 10.1161/circresaha.110.218297
  17. Matkovich S, Van Booven D, Youker K, Torre-Amione G, Diwan A, Eschenbacher W, Dorn L, Watson M, Margulies K, Dorn G. Reciprocal Regulation of Myocardial microRNAs and Messenger RNA in Human Cardiomyopathy and Reversal of the microRNA Signature by Biomechanical Support. Circulation. 2009;119(9):1263-1271. doi: 10.1161/circulationaha.108.813576
  18. Bernardo B, Gao X, Winbanks C, Boey E, Tham Y, Kiriazis H, Gregorevic P, Obad S, Kauppinen S, Du X, Lin R McMullen J. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proceedings of the National Academy of Sciences. 2012;109(43):17615-17620. doi: 10.1073/pnas.1206432109
  19. Huang Y, Qi Y, Du J, Zhang D. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4. Expert Opinion on Therapeutic Targets. 2014;1-11. doi: 10.1517/14728222.2014.961424
  20. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a Biomarker of Myocardial Injury. Clin Chem. 2009;55(11):1944-1949. doi: 10.1373/clinchem.2009.125310
  21. Gidlöf O, Andersson P, van der Pals J, Götberg M, Erlinge D. Cardiospecific microRNA Plasma Levels Correlate with Troponin and Cardiac Function in Patients with ST Elevation Myocardial Infarction, Are Selectively Dependent on Renal Elimination, and Can Be Detected in Urine Samples. Cardiology. 2011;118(4):217-226. doi: 10.1159/000328869
  22. Gidlöf O, Smith J, Miyazu K, Gilje P, Spencer A, Blomquist S, Erlinge D. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord. 2013;13(1):12. doi: 10.1186/1471-2261-13-12

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies