MiRNAs in the diagnosis of cardiovascular diseases associated with type 2 diabetes mellitus and obesity

Full Text

Abstract

Worldwide, the number of patients with type 2 diabetes mellitus (T2DM), obesity, and cardiovascular diseases (CVD) continues to increase steadily. Despite long-term studies of obesity and concomitant diseases, the molecular genetic bases for the development of these pathological conditions have remained the subject of numerous investigations so far. Recent investigations point to the involvement of miRNAs as dynamic modifiers of the pathogenesis of various pathological conditions, including obesity, T2DM, and CVD. MicroRNAs are involved in various biological processes underlying the development of CVDs, including endothelial dysfunction, cell adhesion, and atherosclerotic plaque formation and rupture. Some of them are considered as potential sensitive diagnostic markers of coronary heart disease and acute myocardial infarction. Approximately 1,000 microRNAs are found in the human body. It has been determined that miRNAs regulate 30% of all human genes. Among them there are about 50 circulating miRNAs presumably associated with cardiovascular diseases. This review provides recent data on the participation of some miRNAs in various pathological and physiological states associated with CVD in DM and obesity. An extended and exact understanding of the function of miRNAs in the gene regulatory networks associated with cardiovascular risk in obesity will be able to reveal new mechanisms for the progression of disease, to predict its development, and to elaborate innovative therapeutic strategies.

References

  1. Obesity and overweight. 2015. Available at: http://www.who.int/mediacentre/factsheets/fs311/en/.]
  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart Disease and Stroke Statistics-2014 Update: A Report From the American Heart Association. Circulation. 2013;129(3):e28-e292. doi: 10.1161/01.cir.0000441139.02102.80
  3. Avrahami D, Kaestner KH, editors. Epigenetic regulation of pancreas development and function. Seminars in cell & developmental biology; 2012: Elsevier.
  4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-297. doi: 10.1016/s0092-8674(04)00045-5
  5. Nishiguchi T, Imanishi T, Akasaka T. MicroRNAs and cardiovascular diseases. BioMed Res Int. 2015;2015.
  6. Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M, et al. The MicroRNA Spectrum in 12 Body Fluids. Clin Chem. 2010;56(11):1733-1741. doi: 10.1373/clinchem.2010.147405
  7. Ishida M, Shimabukuro M, Yagi S, Nishimoto S, Kozuka C, Fukuda D et al. MicroRNA-378 regulates adiponectin expression in adipose tissue: a new plausible mechanism. 2014; e11537
  8. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672-675. doi: 10.1111/j.1365-2141.2008.07077.x
  9. Silva J, Garcia V, Zaballos A, Provencio M, Lombardia L, Almonacid L, et al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J. 2010;37(3):617-623. doi: 10.1183/09031936.00029610
  10. Hoheisel JD, Wang X, Sundquist J, Zöller B, Memon AA, Palmér K et al. Determination of 14 Circulating microRNAs in Swedes and Iraqis with and without Diabetes Mellitus Type 2. PLoS ONE. 2014;9(1):e86792. doi: 10.1371/journal.pone.0086792
  11. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769-773. doi: 10.1038/nature03315
  12. Sayed ASM, Xia K, Salma U, Yang T, Peng J. Diagnosis, Prognosis and Therapeutic Role of Circulating miRNAs in Cardiovascular Diseases. Heart, Lung and Circulation. 2014;23(6):503-510. doi: 10.1016/j.hlc.2014.01.001
  13. Wu L, Dai X, Zhan J, Zhang Y, Zhang H, Zhang H et al. Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus. Apmis. 2015;123(7):580-585. doi: 10.1111/apm.12389
  14. Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest. 2013;123(1):11-18. doi: 10.1172/jci62876
  15. Шестакова М.В. Активность ренин-ангиотензиновой системы (РАС) жировой ткани: метаболические эффекты блокады РАС. Ожирение и метаболизм. 2011;8(1):21-25. doi: 10.14341/2071-8713-5187
  16. Дедов И.И, Мельниченко Г.А, Бутрова С.А. Жировая ткань как эндокринный орган. Ожирение и метаболизм. 2006;(1):6-13 doi: 10.14341/2071-8713-4937]
  17. Goossens GH, Blaak EE, van Baak MA. Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesity-related disorders. Obes Rev. 2003;4(1):43-55. doi: 10.1046/j.1467-789X.2003.00091.x
  18. Boustany CM, Bharadwaj K, Daugherty A et al. Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. AJP: Regulatory, Integrative and Comparative Physioly. 2004;287(4):R943-R9. doi: 10.1152/ajpregu.00265.2004
  19. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995;75(3):487-517.
  20. Ruhrberg C, Albinsson S, Skoura A, Yu J, DiLorenzo A, Fernández-Hernando C, et al. Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function. PLoS ONE. 2011;6(4):e18869. doi: 10.1371/journal.pone.0018869
  21. Kannel WB. Diabetes and Cardiovascular Disease. The Framingham study. JAMA. 1979;241(19):2035-2038. doi: 10.1001/jama.1979.03290450033020
  22. Liu J-W, Liu D, Cui K-Z, Xu Y, Li Y-B, Sun Y-M, et al. Recent advances in understanding the biochemical and molecular mechanism of diabetic cardiomyopathy. Biochem Biophys Res Communications. 2012;427(3):441-443. doi: 10.1016/j.bbrc.2012.09.058
  23. Fang ZY, Prins JB, Marwick TH. Diabetic Cardiomyopathy: Evidence, Mechanisms, and Therapeutic Implications. Endocrine Rev. 2004;25(4):543-567. doi: 10.1210/er.2003-0012
  24. Grueter CE, van Rooij E, Johnson BA et al. A Cardiac MicroRNA Governs Systemic Energy Homeostasis by Regulation of MED13. Cell. 2012;149(3):671-683. doi: 10.1016/j.cell.2012.03.029
  25. Шестакова М.В. Дисфункция эндотелия — причина или следствие метаболического синдрома?. Российский медицинскийжурнал. 2001;9(2):88-90.
  26. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs Play an Essential Role in the Development of Cardiac Hypertrophy. Circ Res. 2007;100(3):416-424. doi: 10.1161/01.res.0000257913.42552.23
  27. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Med. 2007;13(4):486-491. doi: 10.1038/nm1569
  28. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al. MicroRNA-133 controls cardiac hypertrophy. Nature Med. 2007;13(5):613-518. doi: 10.1038/nm1582
  29. Jacobs ME, Wingo CS, Cain BD. An emerging role for microRNA in the regulation of endothelin-1. Fronters in Physiology. 2013;4. doi: 10.3389/fphys.2013.00022
  30. Feng B, Cao Y, Chen S, Ruiz M, Chakrabarti S. miRNA-1 regulates endothelin-1 in diabetes. Life Scie. 2014;98(1):18-23. doi: 10.1016/j.lfs.2013.12.199
  31. Capogrossi M, Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V et al. MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells. PLoS ONE. 2011;6(2):e16979. doi: 10.1371/journal.pone.0016979
  32. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M et al. Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes. Circ Res. 2010;107(6):810-817. doi: 10.1161/circresaha.110.226357
  33. Fleissner F, Jazbutyte V, Fiedler J, Gupta SK, Yin X, Xu Q et al. Short Communication: Asymmetric Dimethylarginine Impairs Angiogenic Progenitor Cell Function in Patients With Coronary Artery Disease Through a MicroRNA-21-Dependent Mechanism. Circ Res. 2010;107(1):138-143. doi: 10.1161/circresaha.110.216770
  34. Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N et al. MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science. 2010;328(5985):1570-1573. doi: 10.1126/science.1189862
  35. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3(2):87-98. doi: 10.1016/j.cmet.2006.01.005
  36. Doran AC, Meller N, McNamara CA. Role of Smooth Muscle Cells in the Initiation and Early Progression of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(5):812-819. doi: 10.1161/atvbaha.107.159327
  37. Yang Q, Yang K, Li A. MicroRNA21 protects against ischemia reperfusion and hypoxia reperfusion induced cardiocyte apoptosis via the phosphatase and tensin homolog/aktdependent mechanism. Mol Med Rep. 2014;9:2213-2220.
  38. Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD et al. MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo. Circ Res. 2011;109(8):880-893. doi: 10.1161/circresaha.111.240150
  39. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H et al. MicroRNA Expression Signature and Antisense-Mediated Depletion Reveal an Essential Role of MicroRNA in Vascular Neointimal Lesion Formation. Circ Res. 2007;100(11):1579-1588. doi: 10.1161/circresaha.106.141986
  40. Raitoharju E, Lyytikäinen L-P, Levula M, Oksala N, Mennander A, Tarkka M, et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219(1):211-217. doi: 10.1016/j.atherosclerosis.2011.07.020
  41. Cipollone F, Felicioni L, Sarzani R, Ucchino S, Spigonardo F, Mandolini C, et al. A Unique MicroRNA Signature Associated With Plaque Instability in Humans. Stroke. 2011;42(9):2556-2563. doi: 10.1161/strokeaha.110.597575
  42. Fan X, Wang E, Wang X, Cong X, Chen X. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exper Molr Pathol. 2014;96(2):242-249. doi: 10.1016/j.yexmp.2014.02.009
  43. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences. 2006;103(48):18255-18260. doi: 10.1073/pnas.0608791103
  44. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980-984. doi: 10.1038/nature07511
  45. Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest. 2010;120(11):3912-5916. doi: 10.1172/jci43604
  46. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659-666. doi: 10.1093/eurheartj/ehq013
  47. Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51(5):872-875. doi: 10.1016/j.yjmcc.2011.07.011

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies