Clinical guidelines for the diagnosis and treatment of pulmonary hypertension


Cite item

Full Text

Abstract

Pulmonary hypertension (PH) is a group of diseases characterized by progressive increases in pulmonary vascular resistance and pulmonary artery pressure, which results in right ventricular heart failure and sudden death. Based on the current version of the guidelines for PH diagnosis and treatment, adopted by the experts of the European Society of Cardiology and the European Respiratory Society in 2009, and on the data of Russian and foreign clinical trials, the Russian experts elaborated clinical guidelines for PH in 2013. The latter consider the current classifications of PH, the specific features of its pathogenesis, and its diagnostic algorithm. The section dealing with drugs for maintenance therapy discusses data on the use of oral anticoagulants, diuretics, cardiac glycosides, and oxygen therapy. PH-specific therapy includes calcium antagonists, prostanoids, endothelin receptor antagonists, and phosphodiesterase type 5 inhibitors. Surgical procedures for PH involve atrial septostomy, thromboendartectomy, and lung or heart-lung transplantation. A treatment algorithm is proposed for PH patients. The current medicinal approaches using specific therapy agents and their combinations offer new promises for the effective treatment of patients with PH and improve its prognosis.

Full Text

Эффекторные и регуляторные субпопуляции лимфоцитов крови при стабильном течении ишемической болезни сердца. - Аннотация. Легочная гипертония (ЛГ) - это группа заболеваний, характеризующихся прогрессирующим повышением легочного сосудистого сопротивления и давления в легочной артерии, которое приводит к развитию правожелудочковой сердечной недостаточности и преждевременной смерти пациентов. На основании современной версии рекомендаций по диагностике и лечению ЛГ, принятой экспертами Европейского общества кардиологов и Европейского респираторного общества в 2009 г., клинических данных национальных и зарубежных исследований в 2013 г. российскими экспертами разработаны клинические рекомендации по ЛГ. В них рассматриваются современные классификации ЛГ, особенности патогенеза, алгоритма диагностики ЛГ. В разделе, посвященном средствам поддерживающей терапии, обсуждаются данные о применении пероральных антикоагулянтов, диуретиков, сердечных гликозидов, оксигенотерапии. Специфическая терапия легочной артериальной гипертонии (ЛАГ) включает антагонисты кальция, простаноиды, антагонисты рецепторов эндотелина, ингибиторы фосфодиэстеразы 5-го типа. Среди методов хирургического лечения ЛГ представлены предсердная септостомия, тромбэндартерэктомия и трансплантация легких или комплекса сердце-легкие. Предлагается алгоритм лечения больных ЛАГ. Современные медикаментозные подходы с использованием препаратов специфической терапии и их комбинаций открывают новые перспективы эффективного лечения больных ЛАГ, улучшают их прогноз.
×

References

  1. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685-1695.
  2. Maron R., Sukhova G., Faria A.M. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 2002; 106: 1708-1715.
  3. George J., Yacov N., Breitbart E. et al. Suppression of early atherosclerosis in LDL-receptor deficient mice by oral tolerance with beta-2-glycoprotein I. Cardiovasc Res 2004; 62: 603-609.
  4. van Puijvelde G.H., Hauer A.D., de Vos P. et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 2006; 114: 1968-1976.
  5. van Puijvelde G.H., van Es T., van Wanrooij E.J. et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27 (12): 2677-2883.
  6. Wigren M., Kolbus D., Duner P. et al. Evidence for a role of regulatory T cells in mediating the atheroprotective effect of apolipoprotein B peptide vaccine. J Intern Med 2011; 269: 546-556.
  7. Mundkur L., Mukhopadhyay R., Samson S. et al. Mucosal tolerance to a combination of ApoB and HSP60 peptides controls plaque progression and stabilizes vulnerable plaque in Apob(tm2Sgy)Ldlr(tm1Her)/J mice. PLoS One 2013; 8 (3): e58364.
  8. Jonasson L., Holm J., Skalli O. et al. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986; 6: 131-138.
  9. Zhou X., Nicoletti A., Elhage R. et al. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000; 102: 2919-2922.
  10. Buono C., Come C.E., Stavrakis G. et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol 2003; 23: 454-460.
  11. Buono C., Binder C.J., Stavrakis G. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA 2005; 102: 1596-1601.
  12. Sokolov V.O., Krasnikova T.L., Prokofieva L.V. et al. Expression of markers of regulatory CD4+CD25+foxp3+ cells in atherosclerotic plaques of human coronary arteries. Bull Exp Biol Med 2009; 147 (6): 726-729.
  13. Fontenot J.D., Rasmussen J.P., Williams L.M. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005; 22: 329-341.
  14. Suvas S., Kumaraguru U., Pack C.D. et al. CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 2003; 198: 889-901.
  15. Vignali D.A.A., Collison L.W., Workman C.J. How regulatory T cells work. Nat Rev Immunol 2008; 8 (7): 523-553.
  16. Taleb S., Herbin O., Ait-Oufella H. et al. Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27 (12): 2691-2698.
  17. Mor A., Planer D., Luboshits G. et al. Role of naturally occurring CD4+CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27 (4): 893-900.
  18. Feng J., Zhang Z., Kong W. et al. Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/-mice. Cardiovasc Res 2009; 84 (1): 155-163.
  19. Erbel C., Dengler T.J., Wangler S. et al. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Res Cardiol 2011; 106: 125-134.
  20. Lubberts E., Koenders M.I., Oppers-Walgreen B. et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 2004; 50: 650-659.
  21. Komiyama Y., Nakae S., Matsuki T. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006; 177: 566-573.
  22. Hsu H.C. Yang P., Wang J. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 2008; 9: 166-175.
  23. Ma H.L., Liang S., Li J. et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest 2008; 118: 597-607.
  24. Gao Q., Jiang Y., Ma T. et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 2010; 185: 5820-5827.
  25. Madhur M.S., Funt S.A., Li L. et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol 2011; 31: 1565-1572.
  26. Taleb S., Romain M., Ramkhelawon B. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 2009; 206: 2067-2077.
  27. Zhao Z., Qi Y.Z., Yuan Z.Y. et al. Changes of Foxp3(+); regulatory T cells in patients with acute coronary syndrome. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2011; 27 (8): 893-895.
  28. Li Y.J., Zheng D.D., Chen J. et al. Decrease in CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndrome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2008; 20 (12): 746-767.
  29. Zhao Z., Wu Y., Cheng M. et al. Activation of Th17/Th1 and Th1, but not Th17, is associated with the acute cardiac event in patients with acute coronary syndrome. Atherosclerosis 2011; 217 (2): 518-524.
  30. Mor A., Luboshits G., Planer D. et al. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur Heart J 2006; 27 (21): 2530-2537.
  31. Han S.F., Liu P., Zhang W. et al. The opposite-direction modulation of CD4+CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clin Immunol 2007; 124 (1): 90-97.
  32. Hu Z., Li D., Hu Y. et al. Changes of CD4+CD25+ regulatory T cells in patients with acute coronary syndrome and the effects of atorvastatin. J Huazhong Univ Sci Technolog Med Sci 2007; 27 (5): 524-527.
  33. Cheng X., Yu X., Ding Y.J. et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol 2008; 127 (1): 89-97.
  34. Zhao Y.Q., Fu Q., Li Z.L. et al. Changes of CD4+CD28- T cell and CD4+CD25+ regulatory T cell subsets in patients with coronary heart disease. Nan Fang Yi Ke Da Xue Xue Bao 2007; 27 (4): 474-476.
  35. Simon T., Taleb S., Danchin N. et al. Circulating levels of interleukin-17 and cardiovascular outcomes in patients with acute myocardial infarction. Eur Heart J 2013; 34 (8): 570-577.
  36. Li Q., Wang Y., Chen K. et al. The role of oxidized low-density lipoprotein in breaking peripheral Th17/Treg balance in patients with acute coronary syndrome. Biochem Biophys Res Commun 2010; 394 (3): 836-842.
  37. Ammirati E., Cianflone D., Banfi M. et al. Circulating CD4+CD25hiCD127lo regulatory T-Cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30 (9): 1832-1841.
  38. Bøyum A., Løvhaug D., Tresland L., Nordlie E.M. Separation of leucocytes: improved cell purity by fine adjustments of gradient medium density and osmolality. Scand J Immunol 1991; 34 (6): 697-712.
  39. Wang H.Y., Gao W.T., He Q.H. et al. Endogenous glucocorticoid increases the basal level of Treg-Th17 balance under early phase of stress. Chin J Traumatol 2012; 15 (6): 323-328.
  40. Afshan G., Afzal N., Qureshi S. CD4+CD25(hi) regulatory T cells in healthy males and females mediate gender difference in the prevalence of autoimmune diseases. Clin Lab 2012; 58 (5-6): 567-571.
  41. Fessler J., Ficjan A., Duftner C. et al. The impact of aging on regulatory T-cells. Front Immunol 2013; 4: 231.
  42. George J., Schwartzenberg S., Medvedovsky D. et al. Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis 2012; 222 (2): 519-523.
  43. Wigren M., Björkbacka H., Andersson L. et al. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler Thromb Vasc Biol 2012; 32 (8): 2000-2004.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies