Эффекторные и регуляторные субпопуляции лимфоцитов крови при стабильном течении ишемической болезни сердца


Цитировать

Полный текст

Аннотация

Аннотация. Легочная гипертония (ЛГ) - это группа заболеваний, характеризующихся прогрессирующим повышением легочного сосудистого сопротивления и давления в легочной артерии, которое приводит к развитию правожелудочковой сердечной недостаточности и преждевременной смерти пациентов. На основании современной версии рекомендаций по диагностике и лечению ЛГ, принятой экспертами Европейского общества кардиологов и Европейского респираторного общества в 2009 г., клинических данных национальных и зарубежных исследований в 2013 г. российскими экспертами разработаны клинические рекомендации по ЛГ. В них рассматриваются современные классификации ЛГ, особенности патогенеза, алгоритма диагностики ЛГ. В разделе, посвященном средствам поддерживающей терапии, обсуждаются данные о применении пероральных антикоагулянтов, диуретиков, сердечных гликозидов, оксигенотерапии. Специфическая терапия легочной артериальной гипертонии (ЛАГ) включает антагонисты кальция, простаноиды, антагонисты рецепторов эндотелина, ингибиторы фосфодиэстеразы 5-го типа. Среди методов хирургического лечения ЛГ представлены предсердная септостомия, тромбэндартерэктомия и трансплантация легких или комплекса сердце-легкие. Предлагается алгоритм лечения больных ЛАГ. Современные медикаментозные подходы с использованием препаратов специфической терапии и их комбинаций открывают новые перспективы эффективного лечения больных ЛАГ, улучшают их прогноз.

Полный текст

Эффекторные и регуляторные субпопуляции лимфоцитов крови при стабильном течении ишемической болезни сердца. - Аннотация. Легочная гипертония (ЛГ) - это группа заболеваний, характеризующихся прогрессирующим повышением легочного сосудистого сопротивления и давления в легочной артерии, которое приводит к развитию правожелудочковой сердечной недостаточности и преждевременной смерти пациентов. На основании современной версии рекомендаций по диагностике и лечению ЛГ, принятой экспертами Европейского общества кардиологов и Европейского респираторного общества в 2009 г., клинических данных национальных и зарубежных исследований в 2013 г. российскими экспертами разработаны клинические рекомендации по ЛГ. В них рассматриваются современные классификации ЛГ, особенности патогенеза, алгоритма диагностики ЛГ. В разделе, посвященном средствам поддерживающей терапии, обсуждаются данные о применении пероральных антикоагулянтов, диуретиков, сердечных гликозидов, оксигенотерапии. Специфическая терапия легочной артериальной гипертонии (ЛАГ) включает антагонисты кальция, простаноиды, антагонисты рецепторов эндотелина, ингибиторы фосфодиэстеразы 5-го типа. Среди методов хирургического лечения ЛГ представлены предсердная септостомия, тромбэндартерэктомия и трансплантация легких или комплекса сердце-легкие. Предлагается алгоритм лечения больных ЛАГ. Современные медикаментозные подходы с использованием препаратов специфической терапии и их комбинаций открывают новые перспективы эффективного лечения больных ЛАГ, улучшают их прогноз.
×

Об авторах

Е А Пылаева

Институт клинической кардиологии им. А.Л. Мясникова ФГБУ "Российский кардиологический научно-производственный комплекс" Минздрава России, Москва

Email: iamfrommsu@yandex.ru

А В Потехина

Институт клинической кардиологии им. А.Л. Мясникова ФГБУ "Российский кардиологический научно-производственный комплекс" Минздрава России, Москва

С И Проваторов

Институт клинической кардиологии им. А.Л. Мясникова ФГБУ "Российский кардиологический научно-производственный комплекс" Минздрава России, Москва

К В Раскина

Институт клинической кардиологии им. А.Л. Мясникова ФГБУ "Российский кардиологический научно-производственный комплекс" Минздрава России, Москва

Н Ю РулЁва

Институт клинической кардиологии им. А.Л. Мясникова ФГБУ "Российский кардиологический научно-производственный комплекс" Минздрава России, Москва

В П Масенко

Институт клинической кардиологии им. А.Л. Мясникова ФГБУ "Российский кардиологический научно-производственный комплекс" Минздрава России, Москва

Е А Ноева

Институт клинической кардиологии им. А.Л. Мясникова ФГБУ "Российский кардиологический научно-производственный комплекс" Минздрава России, Москва

Т Л Красникова

Институт клинической кардиологии им. А.Л. Мясникова ФГБУ "Российский кардиологический научно-производственный комплекс" Минздрава России, Москва

Т И Арефьева

Институт клинической кардиологии им. А.Л. Мясникова ФГБУ "Российский кардиологический научно-производственный комплекс" Минздрава России, Москва

Список литературы

  1. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685-1695.
  2. Maron R., Sukhova G., Faria A.M. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 2002; 106: 1708-1715.
  3. George J., Yacov N., Breitbart E. et al. Suppression of early atherosclerosis in LDL-receptor deficient mice by oral tolerance with beta-2-glycoprotein I. Cardiovasc Res 2004; 62: 603-609.
  4. van Puijvelde G.H., Hauer A.D., de Vos P. et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 2006; 114: 1968-1976.
  5. van Puijvelde G.H., van Es T., van Wanrooij E.J. et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27 (12): 2677-2883.
  6. Wigren M., Kolbus D., Duner P. et al. Evidence for a role of regulatory T cells in mediating the atheroprotective effect of apolipoprotein B peptide vaccine. J Intern Med 2011; 269: 546-556.
  7. Mundkur L., Mukhopadhyay R., Samson S. et al. Mucosal tolerance to a combination of ApoB and HSP60 peptides controls plaque progression and stabilizes vulnerable plaque in Apob(tm2Sgy)Ldlr(tm1Her)/J mice. PLoS One 2013; 8 (3): e58364.
  8. Jonasson L., Holm J., Skalli O. et al. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986; 6: 131-138.
  9. Zhou X., Nicoletti A., Elhage R. et al. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000; 102: 2919-2922.
  10. Buono C., Come C.E., Stavrakis G. et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol 2003; 23: 454-460.
  11. Buono C., Binder C.J., Stavrakis G. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA 2005; 102: 1596-1601.
  12. Sokolov V.O., Krasnikova T.L., Prokofieva L.V. et al. Expression of markers of regulatory CD4+CD25+foxp3+ cells in atherosclerotic plaques of human coronary arteries. Bull Exp Biol Med 2009; 147 (6): 726-729.
  13. Fontenot J.D., Rasmussen J.P., Williams L.M. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005; 22: 329-341.
  14. Suvas S., Kumaraguru U., Pack C.D. et al. CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 2003; 198: 889-901.
  15. Vignali D.A.A., Collison L.W., Workman C.J. How regulatory T cells work. Nat Rev Immunol 2008; 8 (7): 523-553.
  16. Taleb S., Herbin O., Ait-Oufella H. et al. Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27 (12): 2691-2698.
  17. Mor A., Planer D., Luboshits G. et al. Role of naturally occurring CD4+CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27 (4): 893-900.
  18. Feng J., Zhang Z., Kong W. et al. Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/-mice. Cardiovasc Res 2009; 84 (1): 155-163.
  19. Erbel C., Dengler T.J., Wangler S. et al. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Res Cardiol 2011; 106: 125-134.
  20. Lubberts E., Koenders M.I., Oppers-Walgreen B. et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 2004; 50: 650-659.
  21. Komiyama Y., Nakae S., Matsuki T. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006; 177: 566-573.
  22. Hsu H.C. Yang P., Wang J. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 2008; 9: 166-175.
  23. Ma H.L., Liang S., Li J. et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest 2008; 118: 597-607.
  24. Gao Q., Jiang Y., Ma T. et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 2010; 185: 5820-5827.
  25. Madhur M.S., Funt S.A., Li L. et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol 2011; 31: 1565-1572.
  26. Taleb S., Romain M., Ramkhelawon B. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 2009; 206: 2067-2077.
  27. Zhao Z., Qi Y.Z., Yuan Z.Y. et al. Changes of Foxp3(+); regulatory T cells in patients with acute coronary syndrome. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2011; 27 (8): 893-895.
  28. Li Y.J., Zheng D.D., Chen J. et al. Decrease in CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndrome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2008; 20 (12): 746-767.
  29. Zhao Z., Wu Y., Cheng M. et al. Activation of Th17/Th1 and Th1, but not Th17, is associated with the acute cardiac event in patients with acute coronary syndrome. Atherosclerosis 2011; 217 (2): 518-524.
  30. Mor A., Luboshits G., Planer D. et al. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur Heart J 2006; 27 (21): 2530-2537.
  31. Han S.F., Liu P., Zhang W. et al. The opposite-direction modulation of CD4+CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clin Immunol 2007; 124 (1): 90-97.
  32. Hu Z., Li D., Hu Y. et al. Changes of CD4+CD25+ regulatory T cells in patients with acute coronary syndrome and the effects of atorvastatin. J Huazhong Univ Sci Technolog Med Sci 2007; 27 (5): 524-527.
  33. Cheng X., Yu X., Ding Y.J. et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol 2008; 127 (1): 89-97.
  34. Zhao Y.Q., Fu Q., Li Z.L. et al. Changes of CD4+CD28- T cell and CD4+CD25+ regulatory T cell subsets in patients with coronary heart disease. Nan Fang Yi Ke Da Xue Xue Bao 2007; 27 (4): 474-476.
  35. Simon T., Taleb S., Danchin N. et al. Circulating levels of interleukin-17 and cardiovascular outcomes in patients with acute myocardial infarction. Eur Heart J 2013; 34 (8): 570-577.
  36. Li Q., Wang Y., Chen K. et al. The role of oxidized low-density lipoprotein in breaking peripheral Th17/Treg balance in patients with acute coronary syndrome. Biochem Biophys Res Commun 2010; 394 (3): 836-842.
  37. Ammirati E., Cianflone D., Banfi M. et al. Circulating CD4+CD25hiCD127lo regulatory T-Cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30 (9): 1832-1841.
  38. Bøyum A., Løvhaug D., Tresland L., Nordlie E.M. Separation of leucocytes: improved cell purity by fine adjustments of gradient medium density and osmolality. Scand J Immunol 1991; 34 (6): 697-712.
  39. Wang H.Y., Gao W.T., He Q.H. et al. Endogenous glucocorticoid increases the basal level of Treg-Th17 balance under early phase of stress. Chin J Traumatol 2012; 15 (6): 323-328.
  40. Afshan G., Afzal N., Qureshi S. CD4+CD25(hi) regulatory T cells in healthy males and females mediate gender difference in the prevalence of autoimmune diseases. Clin Lab 2012; 58 (5-6): 567-571.
  41. Fessler J., Ficjan A., Duftner C. et al. The impact of aging on regulatory T-cells. Front Immunol 2013; 4: 231.
  42. George J., Schwartzenberg S., Medvedovsky D. et al. Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis 2012; 222 (2): 519-523.
  43. Wigren M., Björkbacka H., Andersson L. et al. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler Thromb Vasc Biol 2012; 32 (8): 2000-2004.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Консилиум Медикум", 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Адрес издателя

  • 127055, г. Москва, Алабяна ул., 13, корп.1

Адрес редакции

  • 127055, г. Москва, Алабяна ул., 13, корп.1

По вопросам публикаций

  • +7 (926) 905-41-26
  • editor@ter-arkhiv.ru

По вопросам рекламы

  • +7 (495) 098-03-59

 

 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах