The main pathophysiological mechanisms of kidney injury in obstructive sleep apnea syndrome


Cite item

Full Text

Abstract

Nowadays, obstructive sleep apnea syndrome (OSAS) has been established to promote both structural and functional changes in the kidneys. The basis for these changes is pathophysiological mechanisms, such as hyperproduction of free radicals and disruption of NO-mediated vasodilator responses, activation of the sympathetic autonomic nervous system and the renin-angiotensin-aldosterone system, endothelial dysfunction, development of renal venous hypertension, and stimulation of atrial natriuretic peptide production, which in turn results in increased intraglomerular pressure and glomerular hyperfiltration. In patients with OSAS, the kidneys may be damaged by OSAS-related abnormalities, such as hypertension, diabetes mellitus, metabolic syndrome, erythrocytosis, atherosclerosis, and cor pulmonale, which may also lead to kidney injury under isolated conditions and, when concurrent OSAS is present, may even aggravate the existing kidney injury.

Full Text

Основные патофизиологические звенья поражения почек при синдроме обструктивного апноэ во сне. - Аннотация. В настоящее время установлено, что наличие синдрома обструктивного апноэ во сне (СОАС) способствует развитию как структурных, так и функциональных изменений в почках. В основе этих изменений лежат такие патологические процессы, как повышенная продукция свободных радикалов и срыв опосредованных NO сосудорасширяющих реакций, активация симпатической части вегетативной нервной системы и ренин-ангиотензин-альдостероновой системы, дисфункция эндотелия, развитие венозной гипертонии в почках, стимулирование выработки предсердного натрийуретического пептида. Все это в свою очередь приводит к повышению внутриклубочкового давления и возникновению клубочковой гиперфильтрации. У больных с СОАС поражение почек может быть также обусловлено такими часто сочетающимися с СОАС патологическими состояниями, как артериальная гипертония, сахарный диабет, метаболический синдром, эритроцитоз, атеросклероз и синдром "легочного сердца", которые и в изолированных условиях могут привести к развитию поражения почек, а в условиях добавления СОАС даже усугубить течение последнего.
×

About the authors

P A Zelveian

Email: zelveian@hotmail.com

L G Dgerian

References

  1. Чазова И.Е., Литвин А.Ю. Синдром обструктивного апноэ во время сна и связанные с ним сердечно-сосудистые осложнения. Рос кардиол журн 2006; 1: 75-86.
  2. Ростороцкая В.В., Иванов А.П., Эльгардт И.А. Суммарный риск развития коронарных осложнений у кардиологических больных в связи с наличием храпа, дневной сонливости и синдрома обструктивного апноэ во время сна. Тер арх 2012; 9: 76-77.
  3. Guillot M., Sforza E., Achour-Crawford E. et al. Association between severe obstructive sleep apnea and incident arterial hypertension in the older people population. Sleep Med 2013; 14 (9): 838-842.
  4. Phillips C., O’Driscoll D. Hypertension and obstructive sleep apnea. Nat Sci Sleep 2013; 10: 5: 43-52.
  5. Goyal S., Sharma A. Atrial fibrillation in obstructive sleep apnea. World J Cardiol 2013; 5 (6): 157-163.
  6. Mansukhani M., Calvin A., Kolla B. et al. The association between atrial fibrillation and stroke in patients with obstructive sleep apnea: a population-based case-control study. Sleep Med 2013; 14 (3): 243-246.
  7. Fava C., Montagnana M., Favaloro E. et al. Obstructive sleep apnea syndrome and cardiovascular diseases. Semin Thromb Hemost 2011; 37 (3): 280-297.
  8. Barone D., Krieger A. Stroke and obstructive sleep apnea: a review. Curr Atheroscler Rep 2013; 15 (7): 334.
  9. Зелвеян П.А., Ощепкова Е.В., Арабидзе Г.Г. Синдром апноэ во сне и артериальная гипертония. Тер арх 1997; 9: 76-80.
  10. Shahar E., Whitney C., Redline S. et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 2001; 163 (1): 19-25.
  11. Mehra R., Benjamin E., Shahar E. et al. Association of nocturnal arrhythmias with sleep-disordered breathing: The Sleep Heart Health Study. Am J Respir Crit Care Med 2006; 173 (8): 910-916.
  12. Lau E., Eskes G., Morrison D. et al. The role of daytime sleepiness in psychosocial outcomes after treatment for obstructive sleep apnea. Sleep Disord 2013; 2013: 140725.
  13. Vernet C., Redolfi S., Attali V. et al. Residual sleepiness in obstructive sleep apnoea: phenotype and related symptoms. Eur Respir J 2011; 38 (1): 98-105.
  14. Papalia L., Goldoni M., Spaggiari M. et al. Sleep disorders, risk of accidents and traffic accidents in a group of drivers of public transport. G Ital Med Lav Ergon 2012; 34 (3 Suppl): 353-356.
  15. Sanna A. Obstructive sleep apnoea, motor vehicle accidents, and work performance. Chron Respir Dis 2013; 10 (1): 29-33.
  16. Karimi M., Eder D., Eskandari D. et al. Impaired vigilance and increased accident rate in public transport operators is associated with sleep disorders. Accid Anal Prev 2013; 51: 208-214.
  17. Turek N., Ricardo A., Lash J. Sleep disturbances as nontraditional risk factors for development and progression of CKD: review of the evidence. Am J Kidney Dis 2012; 60 (5): 823-833.
  18. Mirrakhimov A. Obstructive sleep apnea and kidney disease: is there any direct link? Sleep Breath 2012; 16 (4): 1009-1016.
  19. Uyar M., Davutoglu V. Obstructive sleep apnoea: a stand-alone risk factor for chronic kidney disease. Nephrol Dial Transplant 2011; 26 (8): 2718.
  20. Faulx M., Storfer-Isser A., Kirchner H. et al. Obstructive sleep apnea is associated with increased urinary albumin excretion. Sleep 2007; 30: 923-929.
  21. Fletcher E. Obstructive sleep apnea and the kidney. J Am Soc Nephrol 1993; 4: 1111-1121.
  22. Sklar A., Chaudhary B. Reversible Proteinuria in Obstructive Sleep Apnea Syndrome. Arch Intern Med 1988; 148: 87-89.
  23. Chaudhary B., Sklar A., Chaudhary T. et al. Sleep apnea, proteinuria and nephrotic syndrome. Sleep 1988; 11: 69-74.
  24. Bailey R., Lynn K., Burry A. et al. Proteinuria, glomerulomegaly and focal glomerulosclerosis in a grossly obese man with obstructive sleep apnea. Aust NZ J Med 1989; 19: 473-474.
  25. Chaudhary B., Rehman O., Brown T. Proteinuria in patients with sleep apnea. J Family Practice 1995; 40: 139-141.
  26. Zibar L., Kristić A., Krnjeta D., Dogas Z. Risk for sleep apnea syndrome and excessive daily sleepiness in chronic hemodialysis patients. Acta Med Croatica 2011; 65: Suppl 3: 30-35.
  27. Kimmel R., Miller G., Mendelson W. Sleep apnea syndrome in chronic renal disease. Am J Med 1989;86:308-14.
  28. Roumelioti M., Buysse D., Sanders M. et al. Sleep-disordered breathing and excessive daytime sleepiness in chronic kidney disease and hemodialysis. Clin J Am Soc Nephrol 2011; 6 (5): 986-994.
  29. Mendelson W., Wadhwa N., Greenberg H. et al. Effects of hemodialysis on sleep apnea syndrome in end stage renal disease. Clin Nephrol 1990; 33: 247-251.
  30. Kinebuchi S., Kazama J., Satoh M. et al. Short-term use of continuous positive airway pressure ameliorates glomerular hyperfiltration in patients with obstructive sleep apnoea syndrome. Clin Sci (Lond) 2004; 107 (3): 317-322.
  31. Sklar A., Chaudhary B., Harp R. Nocturnal urinary protein excretion rates in patients with sleep apnea. Nephron 1989; 51: 35-38.
  32. Praga M., Hernandez E., Andres A. et al. Effects of body-weight loss and captopril treatment on proteinuria associated with obesity. Nephron 1995; 70: 35-41.
  33. Fine L., Norman J. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 2008; 4: 867-872.
  34. Mello P., Franger M., Boujaoude Z. et al. Night and day proteinuria in patients with sleep apnea. Am J Kidney Dis 2004; 44: 636-641.
  35. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 2006; 17: 17-25.
  36. Bratel T., Ljungman S., Runold M., Stenvinkel P. Renal function in hypoxaemic chronic obstructive pulmonary disease: effects of long-term oxygen treatment. Respir Med 2003; 97: 308-316.
  37. Schmidt M., Ledderhos C., Honig A. Kidney function during arterial chemoreceptor stimulation. I. Influence of unilateral renal nerve section, bilateral cervical vagotomy, constant artificial ventilation and carotid body chemoreceptor inactivation. Biomed Biochim Acta 1985; 44: 695-709.
  38. Krieger J., Imbs J., Schmidt M. et al. Renal function in patients with obstructive sleep apnea. Arch Intern Med 1988; 148: 1337-1340.
  39. Freet C., Stoner J., Tang X. Baroreflex and chemoreflex controls of sympathetic activity following intermittent hypoxia. Auton Neurosci 2013; 174 (1-2): 8-14.
  40. Chouchou F., Pichot V., Pépin J. et al. Sympathetic overactivity due to sleep fragmentation is associated with elevated diurnal systolic blood pressure in healthy elderly subjects: the PROOF-SYNAPSE study. Eur Heart J 2013; 34 (28): 2122-2131.
  41. Crabtree D., Morgan B., Skatrud J. Chemoreflex sensitization augments sympathetic vasomotor outflow in awake humans. Am Rev Respir Dis 1993; 147: A1015.
  42. Fletcher E., Miller J., Schaaf J. et al. Urinary cathecolamines before and after tracheostomy in patients with obstructive sleep apnea and hypertension. Sleep 1987; 10: 35-44.
  43. Xie A., Skatrud J., Puleo D. et al. Exposure to hypoxia produces long-lasting sympathetic activation in humans. J Appl Physiol 2001; 91: 1555-1562.
  44. Greenberg H., Sica A., Batson D. et al. Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol 1999; 86: 298-305.
  45. Cutler M., Swift N., Keller D. et al. Hypoxia-mediated prolonged elevation of sympathetic nerve activity after periods of intermittent hypoxic apnea. J Appl Physiol 2004; 96: 754-761.
  46. Fletcher E., Orolinova N., Bader M. Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol 2002; 92: 627-633.
  47. Cortelli P., Parchi P., Sforza E. et al. Cardiovascular autonomic dysfunction in normotensive awake subjects with obstructive sleep apnoea syndrome. Clin Auton Res 1994; 4: 57-62.
  48. Lai C., Yang C., Hsu Y. et al. Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. J Appl Physiol 2006; 100: 1974-1982.
  49. Phillips B., Narkiewicz K., Pesek C. et al. Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J Hypertens 1999; 17: 61-66.
  50. Greenberg D., Chan J., Sampson H. Endothelins and the nervous system. Neurology 1992; 42: 25-31.
  51. Marasciulo F., Montagnani M., Potenza M. Endothelin-1: the yin and yang on vascular function. Curr Med Chem 2006; 13: 1655-1665.
  52. Haight J., Djupesland P. Nitric oxide and obstructive sleep apnea. Sleep Breath 2003; 7: 53-62.
  53. Ip M., Lam B., Chan L. et al. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med 2000; 162: 2166-2171.
  54. Zhao H., Chen B., Cao J. et al. Effects of obstructive sleep apnea style intermittent hypoxia on endothelin-1, nitric oxide, and nitric oxide synthase in endothelium: experiment with human umbilical vein endothelial cells. Zhonghua Yi Xue Za Zhi 2007; 87 (31): 2189-2192.
  55. Grimpen F., Kanne P., Schulz E. et al. Endothelin-1 plasma levels are not elevated in patients with obstructive sleep apnoea. Eur Respir J 2000; 15: 320-325.
  56. Jordan W., Reinbacher A., Cohrs S. et al. Obstructive sleep apnea: plasma endothelin-1 precursor but not endothelin-1 levels are elevated and decline with nasal continuous positive airway pressure. Peptides 2005; 26: 1654-1660.
  57. Narkiewicz K., van de Borne P., Montano N. et al. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation 1998; 97: 943-945.
  58. Mills P., Kennedy B., Loredo J. et al. Effects of nasal continuous positive airway pressure and oxygen supplementation on norepinephrine kinetics and cardiovascular responses in obstructive sleep apnea. J Appl Physiol 2006; 100: 343-348.
  59. Grote L., Kraiczi H., Hedner J. Reduced α- and Β2-adrenergic vascular response in patients with obstructive sleep apnea. Am J Respir Crit Care Med 2000; 162: 1480-1487.
  60. Jordan W., Cohrs S., Degner D. et al. Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome. J Neural Transm 2006; 113: 239-254.
  61. Lavie L. Obstructive sleep apnoea syndrome - an oxidative stress disorder. Sleep Med Rev 2003; 7: 35-51.
  62. Bruno R., Rossi L., Fabbrini M. et al. Renal vasodilating capacity and endothelial function are impaired in patients with obstructive sleep apnea syndrome and no traditional cardiovascular risk factors. J Hypertens 2013; 31 (7): 1456-1464.
  63. Cohen R. The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog Cardiovasc Dis 1995; 38: 105-128.
  64. Carlson J., Rangemark C., Hedner J. Attenuated endothelium-dependent vascular relaxation in patients with sleep apnoea. J Hypertens 1996; 14: 577-584.
  65. Kato M., Roberts-Thomson P., Phillips B. et al. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation 2000; 102: 2607-2610.
  66. Zhang W., Si LY. Obstructive sleep apnea syndrome and hypertension: pathogenic mechanisms and possible therapeutic approaches. Ups J Med Sci 2012; 117 (4): 370-382.
  67. Fletcher E., Bao G., Li R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension 1999; 34: 309-314.
  68. Bostrom K., Hedner J., Melander O. et al. Interaction between the angiotensin-converting enzyme gene insertion/deletion polymorphism and obstructive sleep apnoea as a mechanism for hypertension. J Hypertens 2007; 25: 779-783.
  69. Wang H., Wang Y., Zhang Y. Changes in plasma angiotensin II and circadian rhythm of blood pressure in hypertensive patients with sleep apnea syndrome before and after treatment. Chin Med Sci J 2011; 26 (1): 9-13.
  70. Millman R., Redline S., Carlisle C. et al. Daytime hypertension in obstructive sleep apnea. Prevalence and contributing risk factors. Chest 1991; 99: 861-866.
  71. Kraiczi H., Hedner J., Peker Y. et al. Increased vasoconstrictor sensitivity in obstructive sleep apnea. J Appl Physiol 2000; 89: 493-498.
  72. Moller D., Lind P., Strunge B. et al. Abnormal vasoactive hormones and 24-hour blood pressure in obstructive sleep apnea. Am J Hypertens 2003; 16: 274-280.
  73. Foster G., Poulin M., Hanly P. Intermittent hypoxia and vascular function: implications for obstructive sleep apnoea. Exp Physiol 2007; 92: 51-65.
  74. Clausen P., Jensen J., Jensen G. et al. Elevated urinary albumin excretion is associated with impaired arterial dilatory capacity in clinically healthy subjects. Circulation 2001; 103 (14): 1869-1874.
  75. Seif F., Patel S., Walia H. et al. Association between obstructive sleep apnea severity and endothelial dysfunction in an increased background of cardiovascular burden. J Sleep Res 2013; 22 (4): 443-451.
  76. Dyugovskaya L., Lavie P., Lavie L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 2002; 165: 934-949.
  77. Schulz R., Hummel C., Heinemann S. et al. Serum levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea and severe nighttime hypoxia. Am J Respir Crit Care Med 2002; 165: 67-70.
  78. Lavie L., Kraiczi H., Hefetz A. et al. Plasma vascular endothelial growth factor in sleep apnea syndrome: effects of nasal continuous positive air pressure treatment. Am J Respir Crit Care Med 2002; 165: 1624-1628.
  79. Reuben D., Wachtel T., Brown P. et al. Transient proteinuria in emergency medical admissions. N Engl J Med 1982; 306: 1031-1033.
  80. Faustinella F., Uzoh C., Sheikh-Hamad D. et al. Glomerulomegaly and proteinuria in a patient with idiopathic pulmonary hypertension. J Am Soc Nephrol 1997; 8: 1966-1970.
  81. Ljunggren M., Lindahl B., Theorell-Haglöw J., Lindberg E. Association between obstructive sleep apnea and elevated levels of type B natriuretic peptide in a community-based sample of women. Sleep 2012; 35 (11): 1521-1527.
  82. Krieger J., Follenius M., Sforza E. et al. Effects of treatment nasal continous positive airway pressure on atrial natriuretic peptide and arginine vasopressin release during sleep in patients with obstructive sleep apnoea. Clin Sci 1991; 80: 443-449.
  83. Krieger J., Schmidt M., Sforza E. et al. Urinary excretion of guanosine 3:5-cyclic monophosphate during sleep in obstructive sleep apnoea patients with and without nasal continuous positive airway pressure treatment. Clin Sci 1989; 76: 31-37.
  84. Krieger J., Laks L., Wilcox I. et al. Atrial natriuretic peptide release during sleep in patients with obstructive sleep apnoea before and during treatment with nasal continuous positive airway pressure treatment. Clin Sci 1989; 77: 407-411.

Copyright (c) 2014 Zelveian P.A., Dgerian L.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies