Sepsis markers. XXI Century

Full Text


Sepsis remains a leading cause of death in all age groups worldwide. Diagnosis, process monitoring, and timely appropriate treatment are all that are a fairly complex problem due to the heterogeneity of the disease itself. Diagnostic biomolecular markers could greatly simplify, accelerate, and objectify the entire healing process, from diagnosis and process monitoring to verification and timely correction of therapy. Today, as a result of technological development of laboratory studies, more than 100 biological units in the general concept of systemic inflammation and infection are being studied as diagnostic markers. The nature of sepsis still remains a mystery.

Full Text

Маркеры сепсиса. ХХI век. - Аннотация. Сепсис все еще остается одной из ведущих причин смертности во всех возрастных группах популяции во всем мире. Диагностика, мониторинг процесса, своевременное адекватное лечение - все это представляет достаточно сложную проблему в силу гетерогенности самого заболевания. Диагностические биомолекулярные маркеры могли бы значительно упростить, ускорить и объективизировать весь лечебный процесс - от диагностики и контроля процесса до верификации и своевременной коррекции лечения. В настоящее время, благодаря развитию технологий лабораторных методов исследования в качестве диагностических маркеров изучается более 100 биологических единиц в общей концепции системного воспаления и инфекции. Природа сепсиса все еще остается загадкой.


  1. Opal S.M. Concept of PIRO as a new conceptual framework to understand sepsis. Pediatr Crit Care Med 2005; 6 (3 Suppl): S55-60.
  2. Goldstein B., Giroir B., Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005; 6 (1): 2-8.
  3. Marshall J.C., Reinhart K. International Sepsis Forum; Biomarkers of sepsis. Crit Care Med 2009; 37 (7): 2290-2298.
  4. Vincent J. L., Sakr Y., Sprung C.L. et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34 (2): 344-353.
  5. Aziz M., Jacob A., Yang W.l. et al. Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukoc Biol 2013; 93 (3): 329-342.
  6. Pierrakos C., Vincent J.L. Sepsis biomarkers: a review. Crit Care 2010; 14 (1): R15.
  7. Lobo S.M., Lobo F.R., Bota D.P. et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest 2003; 123 (6): 2043-2049.
  8. Schmit X., Vincent J.L. The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection 2008; 36 (3): 213-219.
  9. Póvoa P., Coelho L., Almeida E. et al. C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect 2005; 11 (2): 101-108.
  10. Aikawa N., Fujishima S., Endo S. et al. Multicenter prospective study of procalcitonin as an indicator of sepsis. J Infect Chemother 2005; 11 (3): 152-159.
  11. Műller F., Christ-Crain M., Bregenzer T. et al. Procalcitonin levels predict bacteremia in patients with community-acquired pneumonia: a prospective cohort trial. Chest 2010; 138 (1): 121-129.
  12. Simon L., Gauvin F., Amre D.K. et al. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 2004; 39 (2): 206-217.
  13. Giamarellos-Bourboulis E.J., Mega A., Grecka P. et al. Procalcitonin: a marker to clearly differentiate systemic inflammatory response syndrome and sepsis in the critically ill patient? Intensive Care Med 2002; 28 (9): 1351-1356.
  14. Pinsky M.R., Vincent J.L., Deviere J. et al. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 1993; 103 (2): 565-575.
  15. Oberholzer A., Souza S.M., Tschoeke S.K. et al. Plasma cytokine measurements augment prognostic scores as indicators of outcome in patients with severe sepsis. Shock 2005; 23 (6): 488-493.
  16. Bozza F.A., Salluh J.L., Japiassu A.M. et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 2007; 11 (2): R49.
  17. Mera S., Tatulescu D., Cismaru C. et al. Multiplex cytokine profiling in patients with sepsis. APMIS 2011; 119 (2): 155-163.
  18. Cid J., Aguinaco R., Sánchez R. et al. Neutrophil CD64 expression as marker of bacterial infection: a systematic review and meta-analysis. J Infect 2010; 60 (5): 313-319.
  19. Saito K., Wagatsuma T., Toyama H. et al. Sepsis is characterized by the increases in percentages of circulating CD4+CD25+ regulatory T cells and plasma levels of soluble CD25. Tohoku J Exp Med 2008; 216 (1): 61-68.
  20. Nupponen I., Andersson S., Jäärvenpää A.L. et al. Neutrophil CD11b expression and circulating interleukin-8 as diagnostic markers for early-onset neonatal sepsis. Pediatrics 2001; 108 (1): E12.
  21. Ishii K.J., Akira S. Toll-like Receptors and Sepsis. Curr Infect Dis Rep 2004; 6 (5): 361-366.
  22. Karlsson S., Pettilä V., Tenhunen J. et al. HMGB1 as a predictor of organ dysfunction and outcome in patients with severe sepsis. Intens Care Med 2008; 3 (6): 1046-1053.
  23. Jie Zhang, Danyang She, Dan Feng et al. Dynamic changes of serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) reflect sepsis severity and can predict prognosis: a prospective study. BMC Infect Dis 2011; 11: 53.
  24. Doughty L., Clark R. S., Kaplan S.S. et al. sFas and sFas ligand and pediatric sepsis-induced multiple organ failure syndrome. Pediatr Res 2002; 52 (6): 922-927.
  25. Madoiwa S., Nunomiya S., Ono T. et al. Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis-induced disseminated intravascular coagulation. Int J Hematol 2006; 84 (5): 398-405.
  26. Goldenberg N.M., Steinberg B.E., Slutsky A.S., Lee W.L. Broken barriers: a new take on sepsis pathogenesis. Sci Transl Med 2011; 3 (88): 88ps25.
  27. Pickkers P., Sprong T., Eijk Lv. et al. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock 2005; 24 (6): 508-512.
  28. Yang K.Y., Liu K.T., Chen Y.C. et al. Plasma soluble vascular endothelial growth factor receptor-1 levels predict outcomes of pneumonia-related septic shock patients: a prospective observational study. Crit Care 2011; 15 (1): R11.
  29. Huet O., Dupic L., Harrois A., Duranteau J. Oxidative stress and endothelial dysfunction during sepsis. Front Biosci 2011; 16: 1986-1995.
  30. von Dessauer B., Bongain J., Molina V. et al. Oxidative stress as a novel target in pediatric sepsis management. J Crit Care 2011; 26 (1): 103.e1-7.
  31. Holmes C.L., Russell J.A., Walley K.R. Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest 2003; 124 (3): 1103-1115.
  32. Wong H.R., Salisbury S., Xiao Q. et al. The pediatric sepsis biomarker risk model. Crit Care 2012; 16 (5): R174.
  33. Wong H.R. Genetics and Genomics in Pediatric Septic Shock. Crit Care Med 2012; 40 (5): 1618-1626.
  34. Nierhaus A., Klatte S., Linssen J. et al. Revisiting the white blood cell count: immature granulocytes count as a diagnostic marker to discriminate between ССВР and sepsis - a prospective, observational study. BMC Immunol 2013; 14: 8.



Abstract: 95

Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Copyright (c) 2020 BogachEva V.V., Gardovska D.X.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Novoslobodskaya str 31c4., Moscow, 127005, Russian Federation

Managing Editor:


© 2018-2021 "Consilium Medicum" Publishing house

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies