Characteristics of stromal cell precursors in patients after allogeneic bone marrow transplantation

Abstract

AIM: To study the elements of the mesenchymal stromal cell compartment (multipotent mesenchymal stromal cells (MMSCs)) and their more mature progenies of fibroblast colony-forming units (CFU-F) in patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT)/MATERIAL AND METHODS: The total production of MMSCs after 5 passages, the time of their growth, and the concentration of CFU-F in the bone marrow from patients were determined using the control sections before transplantation and over time for 2 years after allo-HSCT. What is more, the genetic affiliation of the MMSCs from the patients after allo-HSCT and their immunophenotype were studied/RESULTS: The MMSCs from the patients after allo-HSCT belong to a recipient and have the immunophenotype that meets the international standard for these cells. The total production of MMSCs in the cultures obtained from the bone marrow of the patients with hematologic diseases was decreased. Not all the samples from the patients after allo-HSCT are able to undergo 5 passages. In addition, the time of growth substantially increases and the total production of cells decreases in all the analyzed cultures. These indicators are gradually restored; however, they never achieve the mean values in donors. The concentration of CFU-F in the bone marrow from the patients are reduced as compared to that in the donors prior to transplantation and decreased still further after allo-HSCT. These cell precursors are not restored for at least 2 years following allo-HSCT/CONCLUSION: Both examined categories of the cell precursors of the stromal environment suffer from both the disease itself and allo-HSCT in the patients with hematologic diseases.

Full Text

Характеристики стромальных клеток-предшественников у больных после аллогенной трансплантации костного мозга. - Резюме. Цель исследования. Изучение элементов отдела мезенхимальных стволовых клеток - мультипотентных мезенхимальных стромальных клеток (ММСК) и их более зрелых потомков колониеобразующих единиц фибробластов (КОЕф) у больных после аллогенной трансплантации гемопоэтических стволовых клеток (алло-ТГСК). Материалы и методы. Суммарную продукцию ММСК за 5 пассажей и время их роста, а также концентрацию КОЕф в костном мозге больных определяли до трансплантации и в динамике на контрольных сроках в течение 2 лет после алло-ТГСК. Кроме того, изучали генетическую принадлежность ММСК больных после алло-ТГСК и их иммунофенотип. Результаты. Показано, что ММСК больных после алло-ТГСК принадлежат реципиенту и обладают иммунофенотипом, соответствующим международному стандарту для этих клеток. Суммарная продукция ММСК в культурах, полученных из костного мозга больных гематологическими заболеваниями, снижена. Не все образцы ММСК от больных после алло-ТГСК способны пройти 5 пассажей. Кроме того, во всех проанализированных культурах существенно увеличивается время роста и снижается суммарная продукция клеток. Постепенно эти показатели восстанавливаются, однако никогда не достигают средних значений у доноров. Концентрация КОЕф в костном мозге больных снижена по сравнению с таковой у доноров до трансплантации и еще больше снижается после алло-ТГСК. Эти клетки-предшественники не восстанавливаются в течение как минимум 2 лет после алло-ТГСК. Заключение. Обе изученные категории клеток-предшественников стромального микроокружения больных с гематологическими заболеваниями страдают как от самого заболевания, так и от алло-ТГСК.
×

References

  1. Dexter T.M., Allen T.D., Lajtha L.G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cel Physiol 1977; 91 (3): 335-344.
  2. Strobel E.S., Gay R.E., Greenberg P.L. Characterization of the in vitro stromal microenvironment of human bone marrow. Intern J Cel Clon 1986; 4 (5): 341-356.
  3. Pittenger M.F., Mackay А.M., Beck S.C. et al. Multilineage potential of adult human mesenchymal stem cells. Science (New York, N.Y.) 1999; 284 (5411): 143-147.
  4. Caplan А.I. Mesenchymal stem cells. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 1991; 9 (5): 641-650.
  5. Kuznetsov S.А., Friedenstein А.J., Robey P.G. Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol 1997; 97 (3): 561-570.
  6. Patt H.M., Maloney M.A. Bone marrow regeneration after local injury: a review. Exper Hematol 1975; 3 (2): 135-148.
  7. Devine S.M., Hoffman R. Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Cur Opin Hematol 2000; 7 (6): 358-363.
  8. Frisch B.J., Ashton J.M., Xing L. et al. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 2012; 119 (2): 540-550.
  9. Galotto M., Berisso G., Delfino L. et al. Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exper Hematol 1999; 27 (9): 1460-1466.
  10. Nifontova I., Svinareva D., Petrova T. et al. Sensitivity of mesenchymal stem cells and their progeny to medicines used for the treatment of hematoproliferative diseases. Acta Haematol 2008; 119 (2): 98-103.
  11. Devine S.M., Hoffman R. Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Cur Opin Hematol 2000; 7 (6): 358-363.
  12. Bemark M., Holmqvist J., Abrahamsson J. et al. Translational Mini-Review Series on B cell subsets in disease. Reconstitution after haematopoietic stem cell transplantation - revelation of B cell developmental pathways and lineage phenotypes. Clin Exper Immunol 2012; 167 (1): 15-25.
  13. Storek J., Geddes M., Khan F. et al. Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin Immunopathol 2008; 30 (4): 425-437.
  14. Horwitz E.M., Le Blanc K., Dominici M. et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7 (5): 393-395.
  15. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4): 315-317.
  16. Awaya N., Rupert K., Bryant E. et al. Failure of adult marrow-derived stem cells to generate marrow stroma after successful hematopoietic stem cell transplantation. Exper Hematol 2002; 30 (8): 937-942.
  17. Lee J., Nam C., Kook H. et al. Microenvironment Constitution and telomere dynamics of bone marrow stromal cells in patients undergoing allogeneic. Bone Marrow Transplant 2003; 32: 947-952.
  18. Chertkov J.L., Drize N.J., Gurevitch O.A. et al. Origin of hemopoietic stromal progenitor cells in chimeras. Exper Hematol 1985; 13 (11): 1217-1222.
  19. Almeida-Porada G., Porada C.D., Tran N. et al. Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood 2000; 95 (11): 3620-3627.
  20. Lazarus H.M., Koc O.N., Devine S.M. et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of blood and marrow transplantation. J Am Society Blood Marrow Transplant 2005; 11 (5): 389-398.
  21. Kern S., Eichler H., Stoeve J. et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells (Dayton, Ohio) 2006; 24 (5): 1294-1301.
  22. Rojewski M.T., Weber B.M., Schrezenmeier H. Phenotypic Characterization of Mesenchymal Stem Cells from Various Tissues. Transfusion Med Hemother 2008; 35 (3): 168-184.
  23. May J.E., Morse H.R., Xu J. et al. Development of a novel, physiologically relevant cytotoxicity model: application to the study of chemotherapeutic damage to mesenchymal stromal cells. Toxicol Applied Pharmacol 2012; 263 (3): 374-389.
  24. Goodell M.A., Brose K., Paradis G. et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exper Med 1996; 183 (4): 1797-1806.
  25. Bigildeev A.E., Zhironkina O.A., Shipounova I.N. et al. Clonal composition of human multipotent mesenchymal stromal cells. Exper Hematol 2012; 40 (10): 847-856.
  26. Colter D.C., Sekiya I., Prockop D.J. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Scie USA 2001; 98 (14): 7841-7845.
  27. Nifontova I.N., Svinareva D.A., Drize N.J. Stromal clonogenic precursors of hemopoietic microenvironment and their rank in the hierarchy of mesenchymal stem cells. Bul Exper Biol Med 2008; 145 (4): 544-547.

Copyright (c) 2013 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies