Multislice spiral computed tomography of coronary arteries: procedure development stages and clinical application


Cite item

Full Text

Abstract

The paper analyzes the data available in the literature on the possibility of using multislice spiral computed tomography in patients with acute coronary syndrome. The authors give the results of their study of the diagnostic value of 64-slice c8omputed tomography in patients with presumptive coronary heart disease (CHD) and its high risk according to the Framingham risk scale (Group 1) versus those with its already established diagnosis (Group 2). The sensitivity of 64-slice computed tomography was 97.8 and 90.2 in Groups 1 and 2, respectively; its specificity was 98.6 and 78.2% in these groups.

Full Text

Мультиспиральная компьютерная томография коронарных артерий: этапы развития методики и применение в клинической практике. - Аннотация. В статье проанализированы данные литературы о возможности применения мультиспиральной компьютерной томографии у пациентов с острым коронарным синдромом. Приведены результаты собственного исследования по изучению диагностической ценности 64-срезовой компьютерной томографии у пациентов с предполагаемой ИБС и высоким риском ее развития по Фрамингемской шкале рисков (1-я группа) в сравнении с пациентами с уже установленным диагнозом ИБС (2-я группа). Установлено, что чувствительность 64-срезовой компьютерной томографии у пациентов 1-й группы составила 97,8% против 90,2% во 2-й группе, специфичность - 98,6% против 78,2%.
×

About the authors

I V Likov

Email: ivl82@mail.ru

S P Morozov

References

  1. Синицин В.Е., Воронов Д.А., Морозов С.П. Степень кальциноза коронарных артерий как прогностический фактор осложнений сердечно-сосудистых заболеваний без клинических проявлений: результаты метаанализа. Тер арх 2006; 9: 22-27.
  2. Терновой С.К., Синицын В.Е., Гагарина Н.В. Неинвазивная диагностика атеросклероза и кальциноза коронарных артерий. М: Атмосфера; 2003.
  3. Hu H., He H., Foley W., Fox S. Four multidetector-row helical CT: Image quality and volume coverage speed. Radiology 2000; 215: 55-62.-*/
  4. Fishman E. Introduction to 64-slice CT and its role in coronary imaging. Applied Radiol 2005; 28: 8-13.
  5. Morgan-Hughes G., Marshall A., Roobottom C. Multislice computed tomographic coronary angiography: experience in a UK centre. Clin Radiol 2003; 58: 378-383.
  6. Hoffmann U. Coronary CT Angiography. J Nuclear Med 2006; 5: 797-806.
  7. Cordeiro M., Miller J., Schmidt A. et al. Non-invasive half millimeter 32 detector row computed tomography angiography accurately excludes significant stenoses in patients with advanced coronary artery disease and high calcium scores. Heart 2006; 92: 589-597.
  8. Hara M., Oshima H. The frontiers of diagnostic radiology - PET/CT, 3DCT. Nippon Geka Gakkai Zasshi 2005; 106 (11): 677-684.
  9. Seifarth H., Ozgun M. 64-Versus 16-slice CT angiography for coronary artery stent assessment: in vitro experience. Invest Radiol 2006; 41 (1): 22-27.
  10. Naiser J.A., Schaller F.A., Bannout R., Tak T. Kawasaki Disease Causing Giant Saccular Aneurysms of the Coronary Arteries: Echocardiographic and 64-Slice Computed Tomographic Angiographic Findings. Tex Heart Inst J 2008; 35 (3): 369-370.
  11. Rodriguez-Palomares J., Cuellar H., Marti G. et al. Coronary angiography by 16-slice computed tomography prior to valvular surgery. Rev Esp Cardiol 2011; 64 (4): 269-276.
  12. Cornily J.C., Gilard M., Bezon E. et al. Cardiac multislice spiral computed tomography as an alternative to coronary angiography in the preoperative assessment of coronary artery disease before aortic valve surgery: a management outcome study. Arch Cardiovasc Dis 2010; 103 (3): 170-175.
  13. Nardi P., Pellegrino A., Romagnoli A. et al. Multidetector computed tomographic coronary angiography as an alternative to conventional coronary angiography in non-coronary surgical patients. J Cardiovasc Surg (Torino) 2011; 52 (3): 429-435.
  14. Lapar D., Ailawadi G., Irvine J. et al. Preoperative computed tomography is associated with lower risk perioperative stroke in reoperative cardiac surgery. Interact Cardiovasc Thorac Surg 2011; 12 (6): 919-923.
  15. Smedema J., Truter I., de Klerk P. et al. Cardiac sarcoidosis evaluated with gadolinium-enhanced magnetic resonance and contrast-enhanced 64-slice computed tomography. Int J Cardiol 2005; 112 (2): 261-263.
  16. Vignaux O. Imagerie cardiaque: Scanner et IRM. Paris: Masson 2005; 245.
  17. Kopp A., Heuschmid M., Reimann A. et al. Evaluation of cardiac function and myocardial viability with 16- and 64-slice multidetector. Eur Radiol 2005; 15: 15-20.
  18. Maintz D. 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol 2006; 16 (4): 818-826.
  19. Williams B.J. Pediatric superior vena cava syndrome: assessment at low radiation dose 64-slice CT angiography. J Thor Imaging 2006; 21 (1): 71-72.
  20. Arslan S., Gundogdu F., Acikel M. et al. Asymptomatic cardiac lipoma originating from the interventricular septum diagnosed by multi-slice computed tomography. Int J Cardiovasc Imaging 2006; 23 (2): 277-279.
  21. Nieman K., Oudkerk M., Rensing B. et al. Coronary angiography with multi-slice computed tomography. Lancet 2001; 357: 599-603.
  22. Pahade J., LaBedis C., Raptopoulos V. et al. Incidence of contrast-induced nephropathy in patients with multiple myeloma undergoing contrast-enhanced CT. Am J Roentgenol 2011; 195 (5): 1094-1101.
  23. Bayram E., Kocatürk H., Kantarci M. et al. Anomalous origin of the right coronary artery arising from the left anterior descending artery in a case with single coronary artery anomaly: multi-detector computer tomography imaging. Anadolu Kardiyol Derg 2008; 8: 385-386.
  24. Yorgun H., Hazirolan T., Kaya E. et al. The prevalence of coronary artery anomalies in patients undergoing multidedector computed tomography for the evaluation of coronary artery disease. Turk Cardiyol Dern Ars 2010; 38 (5): 341-348.
  25. Bagur R., Gleeton O., Bataille Y. et al. Right coronary artery from the left sinus of valsalva: Multislice CT and transradial PCI. World J Cardiol 2011; 3 (2): 54-56.
  26. Fukazawa R., Tamai J., Imai T. et al. Multi-row detector computed tomography coronary angiogram image of an anomalous left coronary artery from the pulmonary artery. J Nippon Med Sch 2011; 78 (1): 2-3.
  27. Bazzocchi G., Romagnoli A., Sperandio M., Simonetti G. Evaluation with 64-slice CT of the prevalence of coronary artery variants and congenital anomalies: a retrospective study of 3,236 patients. Radiol Med 2011; 116 (5): 675-689.
  28. Schussler J., Grayburn P. Non-invasive coronary angiography using multisliced computed tomography. Heart 2007; 93 (3): 290-297.
  29. Jacobs J.Е. How to perform coronary СТА: А to Z. Appl Radiol 2006; 12: 10-17.
  30. Brodoefel H., Reimann A., Burgstahler C. et al. Noninvasive coronary angiography using 64-slice spiral computrd tomography in an unselected patient collective: effect of heart rate, heart rate variability and coronary calcifications on image quality and diagnostic accuracy. Eur J Radiol 2008; 66 (1): 134-141.
  31. Choi H., Choi B., Choe K. et al. Pitfalls, artifacts, and remedies in multidetector row CTcoronary angiography. Radiographics 2004; 24: 787-780.
  32. Терновой С.К., Насникова И.Ю., Морозов С.П. Мультиспиральная компьютерная томография коронарных артерий. Атлас. М: Реал Тайм; 2009
  33. Wang Y., Yang C., Hsiao J. et al. The influence of reconstruction algorithm and heart rate on coronary artery image quality and stenosis detection at 64-detector cardiac CT. Korean J Radiol 2009; 10 (3): 227-234.
  34. Agatston A.S., Janowitz W.R. Coronary calcification: detection by ultrafast computed tomography. Ultrafast computed tomography in cardiac imaging: principles and practice. NY: Futura 1992: 77-95.
  35. Sangiorgi G., Rumberger J.A., Severson A. et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 1998; 31 (1): 126-133.
  36. Davies M., Thomas A. Plaque fissuring: the cause of acute myocardial infarction, sudden ischaemic death and crescendo angina. Ibid 1985; 53: 363-373.
  37. Virmani R., Kolodgie F.D., Burke A.P. et al. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerosis lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1262-1275.
  38. Van der Wal A., Becker A., van der Loos C. et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of dominant plaque morphology. Circulation 1994; 89: 36-44.
  39. Gaspar T., Наlоn R., Rubinshtein N. Сliniсаl applications and future trends in cardial СТА. Eur Radiol 2005; 15: 10-14.
  40. Komatsu S., Imai A., Kodama K. Multidetector row computed tomography may accurately estimate plaque vulnerability. Circ J 2011; 75 (6): 1515-1521.
  41. Soeda T., Uemura S., Morikawa Y. et al. Diagnostic accuracy of dual-source computed tomography in the characterization of coronary atherosclerotic plaques: comparison with intravascular optical coherence tomography. Int J Cardiol 2011; 148 (3): 313-318.
  42. Dirksen M., Jukema J., Bax J. et al. Cardiac multidetector-row computed tomography in patients with unstable angina. Am J Cardiol 2005; 95 (4): 467-461.
  43. Madder R., Chinnaiyan K., Marandici A., Goldstein J. Features of disrupted plaques by coronary computed tomographic angiography: correlates with invasively proven complex lesions. Circ Cardiovasc Imaging 2011; 4 (22): 105-113.
  44. Sozzi F., Civaia F., Rossi P. et al. Long-term follow-up of patients with first-time chest pain having 64-slice computed tomography. Am J Cardiol 2011; 107 (4): 516-521.
  45. Maffei E., Seitun S., Martini C. et al. Prognostic value of computed tomography coronary angiography in patients with chest pain of suspected cardiac origin. Radiol Med 2011; 116 (5): 690-705.
  46. van der Giessen A., Gijsen F., Wentzel J. et al. Small coronary calcifications are not detectable by 64-slice contrast enhanced computed tomography. Int J Cardiovasc Imaging 2011; 27 (1): 143-152.
  47. Mintz G., Nissen S., Anderson W. et al. American college of cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2001; 37 (5): 1478-1492.
  48. Kostamaa H., Donovan J., Kasaoka S. et al. Calcified plaque cross-sectional area in human arteries: correlation between intravascular ultrasound and undecalcified histology. Am Heart J 1999; 137 (3): 482-488.
  49. Hagenaars T., Gussenhoven E.J., Linden E., Bom N. Reproducibility of calcified lesion quantification: a longitudinal intravascular ultrasound study. Ultrasound Med Biol 2000; 26 (7): 1075-1079.
  50. Ликов И.В., Морозов С.П., Сальников Д.В., Сидоренко Б.А. Использование мультиспиральной компьютерной томографии с целью ранней диагностики стенозов коронарных артерий у пациентов с высоким риском развития ишемической болезни сердца. Кардиология 2011; 11: 4-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies