Progress in gene therapy

Full Text


Recent progress in gene therapy, current status of investigations in this area of experimental medicine are reviewed. Much attention is given to gene-therapeutic approaches the efficacy of which is proved in clinical trials.

About the authors

Dina Viktorovna Glazkova


Elena Vladimirovna Bogoslovskaya


German Aleksandrovich Shipulin


Valentin Ivanovich Pokrovskiy


D V Glazkova

Central Research Institute of Epidemiology, Moscow

Central Research Institute of Epidemiology, Moscow

E V Bogoslovskaya

Central Research Institute of Epidemiology, Moscow

Central Research Institute of Epidemiology, Moscow

G A Shipulin

Central Research Institute of Epidemiology, Moscow

Central Research Institute of Epidemiology, Moscow

V I Pokrovsky

Central Research Institute of Epidemiology, Moscow

Central Research Institute of Epidemiology, Moscow


  1. Breakthrough of the year. The runners-up. Science 2009; 326 (5960): 1600-1607.
  2. Heilbronn R., Weger S. Viral vectors for gene transfer: current status of gene therapeutics. Handb. Exp. Pharmacol. 2010; 197: 143-170.
  3. Viola J. R., El-Andaloussi S., Oprea I. I., Smith С. I. Non-viral nanovectors for gene delivery: factors that govern successful therapeutics. Expert Opin. Drug Deliv. 2010; 7 (6): 721-735.
  4. Blaese R. M., Culver K. W., Miller A. D. et al. Т lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 1995; 270 (5235): 475-480.
  5. Somia N., Verma I. M. Gene therapy: trials and tribulations. Nat. Rev. Genet. 2000; 1 (2): 91-99.
  6. Hacein-Bey-Abina S., Garrigue A., Wang G. P. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Сlin. Invest. 2008; 118 (9): 3132- 3142.
  7. Rosenberg S. A., Aebersold P., Cornetta К. et al. Gene transfer into humans - immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 1990; 323 (9): 570-578.
  8. Aiuti A., Roncarolo M. G. Ten years of gene therapy for primary immune deficiencies. In: Hematol. Am. Soc. Hematol. Educ. Program. 2009. 682-689.
  9. Aiuti A., Cattaneo F., Galimberti S. et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 2009; 360 (5): 447-548.
  10. Hacein-Bey-Abina S., Hauer J., Lim A. et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 2010; 363 (4): 355-364.
  11. Gaspar H. B., Parsley K. L., Howe S. et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364 (9452): 2181- 2187.
  12. European Community clinical trials database EudraCT No.: 2007-000684-16: http://eudract.emea.europa.en.
  13. Zhang F., Thornhill S. I., Howe S. J. et al. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 2007; 110 (5): 1448-1457.
  14. Thornhill S. I., Schambach A., Howe S. J. et al. Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol. Ther. 2008; 16 (3): 590-598.
  15. Kang E. M., Malech H. L. Advances in treatment for chronic granulomatous disease. Immunol. Res. 2009; 43 (l-3): 77-84.
  16. Ott M. G., Schmidt M., Schwarzwaelder K. et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat. Med. 2006; 12 (4): 401-409.
  17. Kang E. M., Choi U., Theobald N. et al. Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood 2010; 115 (4): 783-791.
  18. Boztug K., Schmidt M., Schwarzer A. et al. Correction of Wiskott-Aldrich syndrome by hematopoietic stem cell gene therapy. In: XVIII Annual congress of the European Society of Gene and Cell Therapy. (ESGCT) Odober 22-25, 2010. Milan, Italy: 49.
  19. Pawliuk R., Westerman K. A., Fabry M. E. et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001; 294 (5550): 2368-2371.
  20. Sadelain M., Lisowski L., Samakoglu S. et al. Progress toward the genetic treatment of the beta-thalassemias. Ann. H. Y. Acad. Sci. 2005; 1054: 78-91.
  21. Kaiser J. Gene therapy: Beta-thalassemia treatment succeeds, with a caveat. Science 2009; 326 (5959): 1468-1469.
  22. Semmler A., Köhler W., Jung H. H. et al. Therapy of X-linked adrenoleukodystrophy. Expert Rev. Neurother. 2008; 8 (9): 1367-1379.
  23. Cartier N., Hacein-Bey-Abina S., Bartholomae C. C. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326 (5954): 818-823.
  24. Sharma A., Tandon M., Bangari D. S., Mittal S. K. Adenoviral vector-based strategies for cancer therapy. Curr. Drug Ther. 2009; 4 (2): 117-138.
  25. Sherr C. J., McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002; 2 (2): 103-112.
  26. Roth J. A. Adenovirus p53 gene therapy. Expert Opin. Biol. Ther. 2006; 6 (1): 55-61.
  27. Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther. 2005; 1 6 (9): 1016-1027.
  28. INGN 201: Ad-p53, Ad5CMV-p53, adenoviral p53, p53 gene therapy-introgen, RPR/INGN 201. Drugsin R. D. 2007; 8 (3): 176-187.
  29. Shimada H., Matsubara H., Shiratori T. et al. Phase I/II adenoviral p53 gene therapy for chemoradiation resistant advanced esophageal squamous cell carcinoma. Cancer Sci. 2006; 97 (6): 554-561.
  30. Yu W., Fang H. Clinical trials with oncolytic adenovirus in China. Curr. Cancer Drug Targets 2007; 7 (2):141-148.
  31. Khuri F. R., Nemunaitis J., Ganly I., et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer, Nat. Med. 2000; 6 (8): 879-885.
  32. Aghi M., Martuza R. L. Oncolytic viral therapies - the clinical experience. Oncogene 2005; 24 (52): 7802-7816.
  33. Aghi M., Kramm C. M., Chou T. C. et al. Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fiuorocytosine/cytosine deaminase gene therapies. J. Natl. Cancer Inst. 1998; 90 (5): 370-380.
  34. Freytag S. O., Movsas B., Aref I. et al. Phase I trial of replication-competent adenovirus-mediated suicide gene therapy combined with IMRT for prostate cancer. Mol. Ther. 2007; 15 (5): 1016-1023.
  35. Freytag S. O., Stricker H., Peabody J. et al. Five-year follow-up of trial of replication-competent adenovirus-mediated suicide gene therapy for treatment of prostate cancer. Mol. Ther. 2007; 15 (3): 636-642.
  36. Brenner M. K., Okur F. V. Overview of gene therapy clinical progress including cancer treatment with gene-modified Т cells. In: Hematol. Am. Soc. Hematol. Educ. Program. 2009: 675-681.
  37. Westwood J. A., Kershaw M. H. Genetic redirection of Т cells for cancer therapy. J. Leukoc. Biol. 2010; 87 (5): 791-803.
  38. Morgan R. A., Dudley M. E., Wunderlich J. R. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314 (5796): 126-129.
  39. Johnson L. A., Morgan R. A., Dudley M. E. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009; 114 (3): 535-546.
  40. Park J. R., Digiusto D. L., Slovak M. et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic Т lymphocyte clones in patients with neuroblastoma. Mol. Ther. 2007; 15 (4): 825-833.
  41. Pule M. A., Savoldo B., Myers G. D. et al. Virus-specific Т cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 2008; 14 (11): 1264-1270.
  42. Mondino A., Dardalhon V., Michelini R. H. et al. Redirecting the immune response: role of adoptive Т cell therapy. Hum. Gene Ther. 2010; 21 (5): 533-541.
  43. Koido S., Нага Е., Homma S. et al. Cancer vaccine by fusions of dendritic and cancer cells. Clin. Dev. Immunol. 2009; 2009:657369: 1-13.
  44. Bollard C. M., Gottschalk S., Leen A. M. et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 2007; 110 (8): 2838-2845.
  45. Straathof К. С., Bollard C. M., Popat U. et al. Treatment of nasopharyngeal carcinoma with Epstein - Barr virus-specific Т lymphocytes. Blood. 2005; 105 (5): 1898-1904.
  46. Leen A. M., Christin A., Myers G. D. et al. Cytotoxic Т lymphocyte therapy with donor Т cells prevents and treats adenovirus and Epstein - Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood 2009; 114 (19): 4283-4292.
  47. Gerdemann U., Christin A. S., Vera J. F. et al. Nucleofection of DCs to generate Multivirus-specific Т cells for prevention or treatment of viral infections in the immunocompromised host. Mol. Tier. 2009; 17 (9): 1616-1625.
  48. Van Tendeloo V. F., Van de Velde A., Van Driessche A. et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl. Acad. Sci. USA. 2010; 107 (31): 13824-13829.
  49. Von Laer D., Baum C., Protzer U. Antiviral gene therapy. Handb. Exp. Pharmacol. 2009; 189: 265-297.
  50. Rossi J. J., June C. H., Kohn D. B. Genetic therapies against HIV. Nat. Biotechnol. 2007; 25 (12): 1444-1454.
  51. Anderson J., Li M. J., Palmer B. et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes - CCR5 ribozyme, tat-rev siRNA, and TAR decoy - in SCID-hu mouse-derived Т cells. Mol. Ther. 2007; 15 (6): 1182-1188.
  52. http://www.
  53. Gupta R., Tongers J., Losordo D. W. Human studies of angiogenic gene therapy. Circ. Res. 2009; 105 (8): 724-736.
  54. Бокерия Л. А., Аракелян B. C., Еремеева М. В. и др. Опыт лечения хронической ишемии нижних конечностей с помощью стимуляторов ангиогенеза. Клеточ. технол. в биол. и мед. 2007; 3: 159-164.
  55. Jazwa A., Jozkowicz A., Dulak J. New vectors and strategies for cardiovasculargene therapy. Curr. Gene Ther. 2007; 7 (l): 7- 23.
  56. Roy K., Stein L., Kaushal S. Ocular gene therapy: an evaluation of recombinant adeno-associated virus-mediated gene therapy interventions for the treatment of ocular disease. Hum. Gene Ther. 2010; 21 (8): 915-927.
  57. Bainbridge J. W., Ali R. R. Success in sight: The eyes have it! Ocular gene therapy trials for LCA look promising. Gene Ther. 2008; 15 (17): 1191-1192.
  58. Maguire A. M., High K. A., Auricchio A. et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009; 374 (9701): 1597-1605.
  59. Mancuso K., Hauswirth W. W., Li Q. et al. Gene therapy for red-green colour blindness in adult primates. Nature 2009; 461 (7265): 784-787.
  60. Feng L. R., Maguire-Zeiss K. A. Gene therapy in Parkinson's disease: rationale and current status. CNS Drugs 2010; 24 (3): 177-192.
  61. Kaplitt M. G., Feigin A., Tang C. et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369 (9579): 2097-2105.
  62. Muramatsu S., Fujimoto K., Kato S. et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson's disease. Mol. Ther. 2010; 18 (9): 1731-1735.
  63. Jarraya B., Boulet S., Ralph G. S. et al. Dopamine gene therapy for Parkinson's disease in a nonhuman primate without associated dyskinesia. Sci. Transl. Med. 2009; l (2): 2-4.
  64. Zhong L., Li B., Mah C. S. et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc. Natl. Acad. Sci. USA 2008; 105 (22): 7827-7832.
  65. Asokan A., Conway J. C., Phillips J. L. et al. Reengineeringa receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat. Biotechnol. 2010; 28 (1): 79-82.
  66. Marquez R. T., McCaffrey A. P. Advances in microRNAs: implications for gene therapists. Hum. Gene Ther. 2008; 19 (1): 27-38.
  67. Klapper J. A., Thomasian A. A., Smith D. M. et al. Single-pass, closed-system rapid expansion of lymphocyte cultures for adoptive cell therapy. J. Immunol. Meth. 2009; 345 (1-2): 90-99.
  68. Hackett P. B., Largaespada D. A., Cooper L. J. A transposon and transposase system for human application. Mol. Ther. 2010; 18 (4): 674-683.



Abstract: 198

Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Copyright (c) 2011 Glazkova D.V., Bogoslovskaya E.V., Shipulin G.A., Pokrovskiy V.I., Glazkova D.V., Bogoslovskaya E.V., Shipulin G.A., Pokrovsky V.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Novoslobodskaya str 31c4., Moscow, 127005, Russian Federation

Managing Editor:


© 2018-2021 "Consilium Medicum" Publishing house

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies