Leptin and activity of tumor necrosis factor alpha relations with parameters of the trophologic status and digestion in patients with chronic obstructive pulmonary disease


Cite item

Full Text

Abstract

Aim. To study effects of leptin regulation of energy and activity of TNF-alpha on the trophologic status and digestion of main nutrients in patients with stable chronic obstructive pulmonary disease (COPD).
Material and methods. Somatometric methods were used to examine trophologic status in 93 patients with stable COPD. Of them, 22 had stage I, 36 - stage II, 35 patients - stage III. Serum leptin was measured with enzyme immunoassay (EIA) using DSL kit (USA), TNF-alpha and receptors sTNF-R55 and -R75 with EIA (kits BioSource, Belgium). The absorption was assessed biochemically and with radionuclide investigation. Body fat was estimated by bioelectric impedance (OmRon BF-302, Japan).
Results. The level of circulating leptin decreased with progression of COPD and correlated with body fat depletion (r = 0.88±0.12). Activation of the TNF-alpha system was detected in the presence and progression of trophologic insufficiency (TI) in patients with COPD stage II and III. A correlation was found between an elevated level of circulating TNF-alpha and enhanced fat and 131-I-albumin excretion, subnormal excretion of D-xylose.
Conclusion. Low blood serum leptin concentration in patients with moderate and severe stable COPD correlates with fat tissue depletion reflecting reduced energetic potential of adipocytes. High TNF-alpha concentration in the serum was seen only in TI and its progression. This evidences for cytokine involvement in induction of metabolic disorders in COPD patients. Elevated concentration of circulating TNF-alpha closely correlated with excretion of higher quantities of fats, protein, low excretion of D-xylose and proves its involvement in TI development in COPD patients. Activation of TNF-alpha system in COPD does not influence leptin concentration in blood serum as it functions as an independent physiological system.

About the authors

El'vira Ivanovna Beloborodova

Lidiya Alekseevna Akimova

Anna Vladimirovna Asanova

Vera Antonovna Burkovskaya

E I Beloborodova

Siberian State Medical University, Tomsk

Siberian State Medical University, Tomsk

L A Akimova

Military Medical Institute, Tomsk

Military Medical Institute, Tomsk

A V Asanova

Siberian State Medical University, Tomsk

Siberian State Medical University, Tomsk

V A Burkovskaya

Siberian State Medical University, Tomsk

Siberian State Medical University, Tomsk

References

  1. Schols A. M., Slangen J., Volovics L., Wouters E. F. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998; 157: 1791-1797.
  2. Landbo C., Prescott E., Lange P. et al. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999; 160: 1856-1861.
  3. Schols A. M. Pulmonary cachexia. Int. J. Cardiol. 2002; 85: 101-110.
  4. Celli B. R., Cote C. G., Marin J. M. et al. The body-mass, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350 (10): 1005-1012.
  5. Creutzberg E. C., Schols A. M., Bothmer-Quaedvlieg F. C., Wouters E. F. Prevalence of an elevated resting energy expenditure in patients with chronic obstructive pulmonary disease in relation to body composition and lung function. Eur. J. Clin. Nutr. 1998; 52: 396-401.
  6. Wagner P. D. Possible mechanisms underlying the development of cachexia in COPD. Eur. Respir. J. 2008; 31: 492- 501.
  7. Goldstein S. A., Thomashow B. M., Kvetan V. et al. Nitrogen and energy relationships in malnourished patients with emphysema. Am. Rev. Respir. Dis. 1988; 138: 636-644.
  8. Donahoe M., Rogers R. M., Wilson D. O., Pennock B. E. Oxygen consumption of the respiratory muscles in normal and malnourished patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1989; 140: 385-391.
  9. Auwerx J., Staels B. Leptin. Lancet 1998; 351: 737-742.
  10. Basdevant A., Ciangura C. Leptin: from to energy balance. Bull. Acad. Natl. Méd. 2007; 191 (4-5): 887-895.
  11. Barnes P. J. Mediators of chronic obstructive pulmonary disease. Pharmacol. Rev. 2004; 56 (4): 515-548.
  12. Agusti A. G. N., Noguera A., Sauleda J. et al. Systemic effects of chronic obstructive pulmonary disease. Eur. Respir. J. 2003; 21 (2): 347-360.
  13. Merabet E. S., Dagogo-Jack D. W., Coyne S. et al. Increased plasma leptin concentration in end-stage renal disease. J. Clin. Endocrinol. Metab. 1997; 82: 847-850.
  14. Grunfeld C., Zhao C., Fuller J. et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters: a role for leptin in the anorexia of infection. J. Clin. Invest. 1996; 97: 2152-2157.
  15. Schols A. M., Buurman W. A., Staal-van den Brekel A. J. et al. Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in subgroup of patients with chronic obstructive pulmonary disease. Thorax 1996; 51: 819-824.
  16. Eid A. A., Ionescu A. A., Nixon L. S. et al. Inflammatory response and body composition in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001; 164: 1414- 1418.
  17. Tracey K. J., Wei H., Manogue K. R. et al. Cachectin/tumor necrosis factor induces cachexia, anemia and inflammation. J. Exp. Med. 1988; 167: 1211-1227.
  18. Agusti A. G. N., Sauleda J., Miralles C. et al. Skeletal muscle apoptosis and weight loss in COPD // Am. J. Respir. Crit. Care Med. 2002; 166: 485-489.
  19. Di Francia M., Barbier D., Mege J. L., Orehek J. Tumor necrosis factor-α levels and weight loss in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1994; 150: 1453-1455.
  20. De Godoy I., Donahoe M., Calhoun W. J. et al. Elevated TNF-alpha production by peripheral blood monocytes of wiehgt-losing COPD patients. Am. J. Respir. Crit. Care Med. 1996; 153: 633-637.
  21. Hauner H., Petruschke T., Russ M. et al. Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia 1995; 38: 764-771.
  22. Calikoglu M., Sahin G., Untu A. et al. Leptin and TNF-alpha levels in patients with chronic obstructive pulmonary disease and their relationship to nutritional parameters. Respiration 2004; 71 (1): 45-50.
  23. Mantzoros C. S., Moschos S., Avramopoulos I. et al. Leptin concentrations in relation to body mass index and the tumor necrosis factor-a system in humans. J. Clin. Endocrinol. Metab. 1997; 82: 3408-3413.
  24. Shin K. C., Chung J. H., Lee K. H. Effect of TNF-alpha and leptin on weight loss in patients with chronic obstructive pulmonary disease. Korean J. Med. 2007; 22 (4): 249-255.
  25. Grunfeld C., Zhao C., Fuller J. et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters: a role for leptin in the anorexia of infection. J. Clin. Invest. 1996; 97: 2152-2157.
  26. Sarraf P., Frederick R. C., Turner E. M. et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J. Exp. Med. 1997; 185: 171-175.
  27. Zumbach M. S., Boehme M. W. J., Wahl P. et al. Tumor necrosis factor increase serum leptin levels in humans // J. Clin. Endocrinol. Metab. 1997; 82: 4080-4082.
  28. Crutzberg E. C., Wouters E. F. M., Vandcrhoven-Augustin I. M. L. et al. Disturbances in leptin metabolism are related to energy imbalance during acute exacerbations of chronic obstructive pulmonary disease // Am. J. Respir. Crit. Care Med. 2000; 162: 1239-1245.
  29. Gan W. Q., Man S. F., Senthilselvan A., Sin D. D. The association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax 2004; 59: 574-580.
  30. Takabatake N., Nakamura H., Abe S. et al. Circulating leptin in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999; 159: 1215-1219.
  31. Fawcett R. L., Waechter A. S., Williams L. B. et al. Tumor necrosis factor-alpha inhibits leptin production in subcutaneous and omental adipocytes from morbidly obese humans. J. Clin. Endocrinol. Metab. 2000; 85 (2): 530-535.
  32. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/ WHO workshop report. Last updated 2006. www.goldcopd.org/.
  33. Kaplan E., Meier P. Nonparametric estimation from incomplete observation. J. Am. Stat. Assoc. 1958; 53: 457-481.
  34. Van De Kamer J. H., Bokkel Hunink H., Weyer H. A rapid method for the determination of fat in feces. J. Biol. Chem. 1949; 177: 347-355.
  35. Ишмухаметов Л. И. Радиоизотопная диагностика заболеваний органов пищеварения. М.: Медицина; 1979.
  36. Roe J. H., Rice E. W. A photometric method for the determination of free pentoses animal fissues. J. Biol. Chem. 1948; 173 (2): 507-512.
  37. Беленькая Т. Ю. Проба с d-ксилозой в оценке функции кишечника. Ученые записки мед. науки. Петрозаводский ун-т. 1970; 17 (5): 78-81.
  38. Mantzoros C. S., Varvarigoi A., Kaklamani V. G. et al. Effect of birth weight and maternal smoking on cord blood leptin concentrations of full-term and preterm newborns. J. Clin. Endocrinol. Metab. 1997; 82: 2856-2861.
  39. Diez-Ruiz A., Tilz G. P., Zangerle R. et al. Soluble receptors for tumor necrosis factor in clinical laboratory diagnosis. Eur. J. Haematol. 1995; 54: 1-8.
  40. Yamamoto C., Yonoda T., Yoshikawa M. et al. The relationship between a decrease in fat mass and scrum levels of TNF alfa in patients with chronic obstructive pulmonary disease (in Japanese). Nihon Kyobu Shikkan Gakkai Zasshi 1997; 35: 1191- 1195.
  41. Fiers W. Tumor necrosis factors. In: Sim E., ed. The natural immune system: Humoral factors. Oxford: IRL Press; 1993: 66-119.
  42. Bradley J. R. TNF-mediated inflammatory disease. J. Pathol. 2008; 214 (2): 149-160.
  43. Petrache I., Otterbein L. E., Alam J. et al. Heme oxygenase-I inhibits TNF-a-induced apoptosis in cultured fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 278: 312-319.
  44. Yuan Y., Wang Z., Liu C. Preliminary investigation of the effect of serum leptin on the nutritional state of COPD patients (in Chinese). Zhonghua Jic Hc Hc Hu Xi Za Zhi. 2000; 23: 292-295.
  45. Fourman L. P. R. Absorption of xylose in steatorrhea. Clin. Sci. 1948; 4: 289-294.
  46. Физиология всасывания. Уголев А. М., Амиров Н. Ш., Файтельберг Р. О. и др. Л.: Наука; 1977.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies