Effect of the anti-inflammatory peptide preparation ingramon on the blood levels of acute-phase proteins and chemokines in patients after coronary stenting

Abstract


Aim. To study the effect of the anti-inflammatory peptide preparation ingramon on the peripheral blood levels of inflammatory markers in patients with exercise-induced stable angina after coronary stenting (CS).
Subjects and methods. The investigation enrolled 64 patients with stable angina who had undergone coronary bypass surgery, of them 34 patients received ingramon in addition to standard therapy. The blood levels of high-sensitive C-reactive protein (hs-CRP), fibrinogen, the chemokines MCP-1, IL-8, IP-10, and MID were measured before and 1, 2, and 7 days and 1, 3, and 6 months after surgery. Twenty patients who had gone coronarography (CG) only were examined as a control group.
Results. In the postCS patients receiving only standard therapy, the levels of hs-CRP and fibrinogen were much higher on days 1, 2, and 7 after surgery than in the CG patients. On day 1 following CS, the increment in hs-CRP correlated with the length of implanted stents. During ingramon therapy, the content of hs-CRP and fibrinogen was considerably lower on days 1, 2, and 7 after CS than in the control group; this trend persisted a month after surgery; there was also a reduction in MCP-1 levels within the first 24 hours after initiation of therapy. The levels of the chemokines IP-10, MIG, and IL-8 were significantly unchanged.
Conclusion. When added to standard therapy, ingramon exerts a positive effect against risk factors for coronary heart disease (CHD) and its events. Further investigations are required to define the impact of ingramon therapy on prognosis in patients with CHD.

About the authors

Aleksandra Viktorovna Potekhina

Email: potehina@gmail.com

Sergey Il'ich Provatorov

Tat'yana Igorevna Aref'eva

Nadezhda Borisovna Kukhtina

Valeriy Pavlovich Masenko

Elena Ivanovna Kaznacheeva

Natal'ya Yur'evna Ruleva

Elena Aleksandrovna Noeva

Mariya Konstantinovna Osyaeva

Mariya Vladimirovna Sidorova

Zhanna Dmitrievna Bespalova

Tat'yana Leonidovna Krasnikova

A V Potekhina

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

S I Provatorov

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

T I Arefyeva

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

N B Kukhtina

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

V P Masenko

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

E I Kaznacheyeva

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

N Yu Ruleva

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

E A Noyeva

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

M K Osyaeva

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

M V Sidorova

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Zh D Bestalova

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

T L Krasnikova

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

Russian Cardiology Research-and-Production Complex, Russian Agency for Medical Technologies

References

  1. Mach F., Sauty A., Iarossi A. S. et al. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J. Clin. Invest. 1999; 104(8): 1041- 1050.
  2. Кухтина Н. Б., Арефьева Т. И., Арефьева А. М. и др. Экспрессия хемокинов и цитокинов в атеросклеротических бляшках и интиме артерий у больных ИБС. Тер. арх. 2008; 4; 63-69.
  3. Проваторов С. И., Арефьева Т. И., Кухтина Н. Б. и др. Маркеры воспаления - моноцитарный хемотаксический белок-1 (МСР-1) и С-реактивный белок - в крови пациентов с нестабильной стенокардией и стабильной стенокардией напряжения. Тер. арх. 2006; 78(6): 66-69.
  4. de Lemos J. A., Morrow D. A., Blazing M. A. et al. Serial measurement of monocyte chemoattractant protein-1 after acute coronary syndromes: results from the A to Z trial. J. Am. Coll. Cardiol. 2007; 50(22): 2117-2124.
  5. Sako H., Miura S., Iwata A. et al. Changes in CCR2 chemokine receptor expression and plasma MCP-l concentration after the implantation of bare metal stents versus sirolimus-eluting stents in patients with stable angina. Intern. Med. 2008; 47(1): 7-13.
  6. European guidelines on cardiovascular disease and prevention in clinical practice. Eur. J. Cardiovasc. Prevent. Rehabil. 2007; 14(Suppl. 2): S1-S113.
  7. Fibrinogen Studies Collaboration, Danesh J., Lewington S., Thompson S. G. et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality. An individual participant meta-analysis. J. A. M. A. 2005; 294: 1799-1809.
  8. Danesh J., Phil D., Wheeler J. G. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 2004; 350: 1387- 1397.
  9. Li J. J., Qin X. W., Yang X. C. et al. Randomized comparison of early inflammatory response after sirolimus-eluting stent vs bare metal stent implantation in native coronary lesions. Clin. Chim. Acta 2008; 396(1-2): 38-42.
  10. Saleh N., Tornvall P. Serum C-reactive protein response to percutaneous coronary intervention in patients with unstable or stable angina pectoris is associated with the risk of clinical restenosis. Atherosclerosis 2007; 195(2): 374-378.
  11. Kralisz P., Kemona H., Dobrzycki S. et al. Changes in C-reactive protein levels following coronary stent implantation depend on the extent of periprocedural arterial injury. Kardiol. Pol. 2006; 64(4): 364-371.
  12. Saleh N., Svane B., Jensen J. et al. Stent implantation, but not pathogen burden, is associated with plasma C-reactive protein and interleukin-6 levels after percutaneous coronary intervention in patients with stable angina pectoris. Am. Heart J. 2005; 149(5): 876-882.
  13. Gach O., Legrand V., Biessaux Y. et al. Long-term prognostic significance of high-sensitivity C-reactive protein before and after coronary angioplasty in patients with stable angina pectoris. Arch. Mal. Coeur 2007; 100(11): 925-933.
  14. Yun K. H., Jeong M. H., Oh S. K. et al. Response of high-sensitivity C-reactive protein to percutaneous coronary intervention in patients with acute coronary syndrome. Heart and Vessels 2009; 24(3): 175-180.
  15. Dibra A., Mehilli J.,Braun S. et al. Inflammatory response after intervention assessed by serial C-reactive protein measurement correlates with restenosis in patients treated with coronary stenting. Am. Heart J. 2005; 150(2): 344-350.
  16. Li J. J., Ren Y., Chen K. J. et al. Impact of C-reactive protein on in-stent restenosis: a meta-analysis. Tex. Heart Inst. J. 2010; 37(1): 49-57.
  17. Ferrante G., Niccoli G., Biasucci L. M. et al. Association between C-reactive protein and angiographic restenosis after bare metal stents: an updated and comprehensive meta-analysis of 2747 patients. Cardiovasc. Revasc. Med. 2008; 9(3): 156-165.
  18. Iijima R., Byrne R. A., Ndrepepa G. et al. Pre-procedural C-reactive protein levels and clinical outcomes after percutaneous coronary interventions with and without abciximab: pooled analysis of four ISAR trials. Heart 2009; 95(2): 107-112.
  19. Красникова Т. Л., Арефьева Т. И., Мелехов М. Г. и др. Пептид последовательности 66-77 моноцитарного хемотаксического белка-1 (МСР-1) - ингибитор воспаления у экспериментальных животных. Докл. РАН 2005; 404(4): 551- 554.
  20. Chazov E. I., Bespalova J. D., Arefieva T. I. et al. The peptide analogue of MCP-1 65-76 sequence is an inhibitor of inflammation. Can. J. Physiol. Pharmacol. 2007; 85(3-4): 332-340.
  21. Chenevard R., Hurlimann D., Bechir M. et al. Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation 2003; 107: 405-409.
  22. FitzGerald G. A. Cardiovascular pharmacology of nonselective nonsteroidal anti-inflammatory drugs and coxibs: clinical considerations. Am. J. Cardiol. 2002; 89: 26D-32D.
  23. Juni P., Nartey L., Reichenbach S. et al. Risk of cardiovascular events and rofecoxib: cumulative meta-analysis. Lancet 2004; 364: 2021-2029.
  24. McGettigan P., Henry D. Cardiovascular risk and inhibition of cyclooxygenase. A systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. J. A. M. A. 2006; 296: 1633-1644 (doi: 10.1001/jama.296.13.jrv60011).
  25. Nakano K., Egashira K., Ohtani K. et al. Catheter-based adenovirus-mediated anti-monocyte chemoattractant gene therapy attenuates in-stent neointima formation in cynomolgus monkeys. Atherosclerosis 2007; 194(2): 309-316.
  26. Horvath C., Welt F. G., Nedelman M. et al. Targeting CCR2 or CD18 inhibits experimental in-stent restenosis in primates: inhibitory potential depends on type of injury and leukocytes targeted. Circ. Res. 2002; 90(4): 488-494.
  27. Handel T. M., Johnson Z., Crown S. E. et al. Regulation of protein function by glycosaminoglycans - as exemplified by chemokines. Annu. Rev. Biochem. 2005; 74: 385-410.

Statistics

Views

Abstract - 94

Cited-By


Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.

Copyright (c) 2010 Potekhina A.V., Provatorov S.I., Aref'eva T.I., Kukhtina N.B., Masenko V.P., Kaznacheeva E.I., Ruleva N.Y., Noeva E.A., Osyaeva M.K., Sidorova M.V., Bespalova Z.D., Krasnikova T.L., Potekhina A.V., Provatorov S.I., Arefyeva T.I., Kukhtina N.B., Masenko V.P., Kaznacheyeva E.I., Ruleva N.Y., Noyeva E.A., Osyaeva M.K., Sidorova M.V., Bestalova Z.D., Krasnikova T.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Novoslobodskaya str 31c4., Moscow, 127005, Russian Federation

Managing Editor:

 

© 2018 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies