The basic properties of bone marrow mesenchymal stromal cells from donors: superficial markers


Cite item

Full Text

Abstract

Aim. To characterize a superficial phenotype and to make a cytogenetic analysis of bone marrow (BM) mesenchymal stromal cells (MSC) from donors.
Materials and methods. The study analyzed BM samples from 11 healthy donors. The phenotype of obtained MSC was analyzed using cytofluorometry. Chromosomal analysis was carried out at the first-second passage.
Results. The superficial phenotype of MSC was steady-state during 8 passages and conformed to the worldwide standard for this cell population. The marker NGFR+ was detectable only during the first 2 passages and the count of CD146+ cells was decreased to 50% as consecutive passages were carried out, which confirms that MSCs have lost their neural and endothelial differentiation capacity. MSCs are stably able to differentiate only into the mesenchymal lineage. The detection of chromosomal rearrangements in MSCs at different stages of cultivation revealed no clonal rearrangements in any case. However, chromosomal aberrations were found 3-10% of metaphases at the first and second passages, which may be associated with chromosome instability in primary cultures.
Conclusion. The pooled data suggest that the analyzed MSCs meet the conventional worldwide standards.

About the authors

D A Svinareva

Hematology Research Center, Russian Academy of Medical Sciences

Email: svinareva@gmail.com
лаборатория физиологии кроветворения, отделение высокодозной химиотерапии гемобластозов и трансплантации костного мозга- канд. биол. наук, науч. сотр; Учреждение РАМН "Гематологический научный центр РАМН"; Hematology Research Center, Russian Academy of Medical Sciences

I N Shipunova

Hematology Research Center, Russian Academy of Medical Sciences

Email: iranifontova@yndex.ru
лаборатория физиологии кроветворения, отделение высокодозной химиотерапии гемобластозов и трансплантации костного мозгаканд. биол. наук, науч. сотр; Учреждение РАМН "Гематологический научный центр РАМН"; Hematology Research Center, Russian Academy of Medical Sciences

Yu V Olshanskaya

Hematology Research Center, Russian Academy of Medical SciencesFederal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Russian Agency for Health Care

Email: olsh@blood.ru
лаборатория физиологии кроветворения, отделение высокодозной химиотерапии гемобластозов и трансплантации костного мозгалаборатория цитогенетикиканд. мед. наук., науч. сотр; Учреждение РАМН "Гематологический научный центр РАМН"ФГУ ФНКЦ ДГОИ Росздрава; Hematology Research Center, Russian Academy of Medical SciencesFederal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Russian Agency for Health Care

K S Momotyuk

Hematology Research Center, Russian Academy of Medical Sciences

Email: donnadomna@mail.ru
лаборатория физиологии кроветворения, отделение высокодозной химиотерапии гемобластозов и трансплантации костного мозгаканд. мед. наук, зав. лаб; Учреждение РАМН "Гематологический научный центр РАМН"; Hematology Research Center, Russian Academy of Medical Sciences

N I Drize

Hematology Research Center, Russian Academy of Medical Sciences

Email: ndrize@yandex.ru
лаборатория физиологии кроветворения, отделение высокодозной химиотерапии гемобластозов и трансплантации костного мозгад-р биол. наук, зав. лаб; Учреждение РАМН "Гематологический научный центр РАМН"; Hematology Research Center, Russian Academy of Medical Sciences

V G Savchenko

Hematology Research Center, Russian Academy of Medical Sciences

Email: SVG@blood.ru
чл.-кор. РАМН, проф., д-р мед. наук, дир; НИИ трансплантации костного мозга и молекулярной гематологии УРАМН ГНЦ РАМН; Hematology Research Center, Russian Academy of Medical Sciences

References

  1. Caplan A. I. Mesenchymal stem cells. J. Orthop. Res. 1991; 9 (5): 641-650.
  2. Horwitz E. M., Le Blanc K., Dominici M. et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7 (5): 393-395.
  3. Jorgensen C., Gordeladze J., Noel D. Tissue engineering through autologous mesenchymal stem cells. Curr. Opin. Biotechnol. 2004; 15 (5): 406-410.
  4. Caplan A. I. Osteogenesis imperfecta, rehabilitation medicine, fundamental research and mesenchymal stem cells. Connect. Tissue Res. 1995; 31 (4): S9-S14.
  5. Horwitz E. M., Prockop D. J., Fitzpatrick L. A. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 1999; 5 (3): 309-313.
  6. Deans R. J., Moseley A. B. Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 2000; 28 (8): 875- 884.
  7. Vercelli A., Mereuta O. M., Garbossa D. et al. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 2008; 31 (3): 395-405.
  8. Tyndall A., Uccelli A. Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks. Bone Marrow Transplant. 2009; 43 (11): 821-828.
  9. Le Blanc K., Rasmusson I., Sundberg B. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363 (9419): 1439- 1441.
  10. Deeg H. J. How I treat refractory acute GVHD. Blood 2007; 109 (10): 4119-4126.
  11. Jones B. J., McTaggart S. J. Immunosuppression by mesenchymal stromal cells: from culture to clinic. Exp. Hematol. 2008; 36 (6): 733-741.
  12. Rosland G. V., Svendsen A., Torsvik A. et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009; 69 (13): 5331-5339.
  13. Rubio D., Garcia-Castro J., Martin M. C. et al. Spontaneous human adult stem cell transformation. Cancer Res. 2005; 65 (8): 3035-3039.
  14. Wang Y., Huso D. L., Harrington J. et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 2005; 7 (6): 509-519.
  15. Bernardo M. E., Zaffaroni N., Novara F. et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 2007; 67 (19): 9142-9149.
  16. Meza-Zepeda L. A., Noer A., Dahl J. A. et al. High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J. Cell Mol. Med. 2008; 12 (2): 553- 563.
  17. Lange C., Cakiroglu F., Spiess A. N. et al. Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J. Cell Physiol. 2007; 213 (1): 18-26.
  18. Seabright M. A rapid banding technique for human chromosomes. Lancet 1971; 2 (7731): 971-972.
  19. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4): 315-317.
  20. Свинарева Д. А., Петрова Т. В., Шипунова (Нифонтова) И. Н. и др. Исследование параметров дифференцировки мезенхимных стромальных клеток у здоровых доноров и больных апластической анемией. Tep. apx. 2009; 81 (7): 66-70.
  21. Sacchetti B., Funari A., Michienzi S. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007; 131 (2): 324-336.
  22. Jones E. A., Kinsey S. E., English A. et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis. Rheum. 2002; 46 (12): 3349-3360.
  23. Quirici N., Soligo D., Bossolasco P. et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 2002; 30 (7): 783-791.
  24. Buhring H. J., Battula V. L., Treml S. et al. Novel markers for the prospective isolation of human MSC. Ann. N. Y. Acad. Sci. 2007; 1106: 262-271.
  25. Zhang Z. X., Guan L. X., Zhang K. et al. Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biol. Int. 2007; 31 (6): 645-648.
  26. Mareschi K., Ferrero I., Rustichelli D. et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J. Cell Biochem. 2006; 97 (4): 744-754.
  27. Little M. P. A comparison of the degree of curvature in the cancer incidence dose-response in Japanese atomic bomb survivors with that in chromosome aberrations measured in vitro. Int. J. Radiat. Biol. 2000; 76 (10): 1365-1375.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies