Molecular factors of angiogenesis in renal tissue of patients with chronic glomerulonephritis: association with nephrosclerosis and anemia

Full Text

Abstract

Aim. To study correlations between accumulation of angiogenesis molecular factors (hypoxia-inducible factor-1alpha - HIF-1α, vascular endothelial growth factor - VEGF, thrombospondin -TSP-1) in kidney biopsy tissue from chronic glomerulonephritis (CGN) patients and severity of nephrosclerosis, obliteration of renal capillary bed, filtration dysfunction and anemia.
Material and methods. We examined 22 patients with marked proteinuria (2.7; 5.7, mean 4.2 g/day). Half of the patients had nephrotic syndrome. Glomerular filtration rate (GFR) by Cochroft-Golt formula was 68 (53;84) ml/min/1.73 m2. According to renal biopsy findings, CGN was detected in 19 patients, 2 patients had lupus nephritis (LN), 1 patient had renal amyloidosis. Nineteen CGN patients were divided into two groups by nephrosclerosis severity: group 1-7 patients with moderate nephrosclerosis, group 2-12 patients with severe nephrosclerosis. Cryostate sections of renal biopsy tissue samples were studied immunohistochemically using monoclonal antibodies to HIF-1α, VEGF, TSP-1, CD34. The reaction intensity was assessed by 6-point scale semuquantitative method.
Results. Response to HIF-1a was stronger in the tubular epithelium than in glomeruli. No correlation was observed between accumulation of HIF-1a in the glomeruli and tubular epithelium. Intensity of glomerular staining correlated with severity of proteinuria (Rs = 0.63, p < 0.05), intensity of HIF-1α accumulation in tubular epithelium correlated with duration of the kidney disease (Rs = 0.74, p < 0.001), duration of persistent arterial hypertension (Rs = 0.68, p < 0.05) and severity of nephrosclerosis. VEGF and TSP-1 were found in equal quantity both in the glomeruli and renal interstitium. CGN patients with marked nephrosclerosis had lower accumulation of VEGF and higher TSP-1 in the interstitium. No correlation was found between intensity of tubular epithelium response to HIF-1α and accumulation of VEGF in the interstitium. Patients with severe nephrosclerosis demonstrated weaker staining of tubulointerstitium to CD34, reflecting the degree of its vascularisation. Significant correlation between CD34 and expression of HIF-1α, VEGF, TSP-1 was not registered. In patients with low intensity of tubular epithelial staining to HIF-1α (less than 2 points) anemia was detected in 63% versus 18% in patients with more intensive accumulation.
Conclusion. CGN progression is associated with development of renal tubulointerstitial ischemia. High tubular production of HIF-1α was not accompanied with activation of VEGF accumulation in renal interstitium but was associated with reduced risk of anemia in CGN patients with manifest nephrosclerosis.

References

  1. Eknoyan G., Lameire N., Barsoum R. et al. The burden of kidney disease: improving global outcomes. Kidney Int. 2004; 66: 1310-1314.
  2. Risdon R. A., Sloper J. A. C., de Wardener H. E. Relationship between renal function and histological changes found in renal biopsy specimens from patients with persistent glomerular nephritis. Lancet 1968; 2: 363-366.
  3. Bohle A., Grund K. E., Mackensen S., Tolon M. Correlation between renal interstitium and level of serum creatinine. Virchows Arch. A. Pathol. Anat. Histol. 1977; 373: 15-23.
  4. Remuzzi G. Nephropathic nature of proteinuria. Curr. Opin. Nephrol. Hypertens. 1999; 8:655-663.
  5. Мухин Н. А., Козловская Л. В., Бобкова И. Н. и др. Индуцируемые протеинурией механизмы ремоделирования тубулоинтерстиция и возможности нефропротекции при гломерулонефрите. Вестн. РАМН 2005; 1: 3-8.
  6. Kikuchi H., Kawachi H. et al. Severe proteinuria, sustained for 6 months, induces tubular epithelial cell injury and cell infiltration in rats but not progressive interstitial fibrosis. Nephrol. Dial. Transplant. 2000; 15 (6):799-810.
  7. Kuusniemi A. M., Lapatto R., Holmberg С. et al. Kidneys with heavy proteinuria show fibrosis, inflammation, and oxidative stress, but no tubular phenotypic change. Kidney Int. 2005; 68 (1): 121-132.
  8. Bohle A., Miiller G. A., Wehrmann M. et al. Pathogenesis of chronic renal failure in the primary glomerulopathies, renal vasculopathies, and chronic interstitial nephritides. Kidney Int. Suppl. 1996; 54: S2-S9.
  9. White K. E., Marshall S. M., Bilous R. W. Prevalence of atubular glomeruli in type 2 diabetic patients with nephropathy. Nephrol. Dial. Transplant. 2008; 23(11): 3539-3545.
  10. Fine L. G., Ong A. C. M., Norman J. T. Mechanisms of tubulointerstitial injury in progressive renal diseases. Eur. J. Clin. Invest. 1993; 23: 259-265.
  11. Scoble J. E. The natural history and management of renovascular disease. In: El Nahas A. M., Harris K. P. G., Anderson S., eds. Mechanisms and clinical management of chronic renal failure. New York: University Press; 2000: 263-301.
  12. Мухин Н. А., Козловская Л. В., Кутырина И. М. и др. Ишемическая болезнь почек. Тер. apx. 2003; 75 (6): 5-11.
  13. Iruela-Arispe M. L., Dvorak H. F. Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb. Haemost. 1997; 78 (l): 672-677.
  14. Maxwell P. HIF-1: an oxygen response system with special relevance to the kidney. J. Am. Soc. Nephrol. 2003; 14 (11): 2712-2722.
  15. Haase V. H. Hypoxia-inducible factors in the kidney. Am. J. Physiol. Ren. Physiol. 2006; 291 (2): F271-F281.
  16. Nangaku M., Eckardt K.-U. Hypoxia and the HIF system in kidney disease. J. Mol. Med. 2007; 85: 1325-1330.
  17. Hoeben A., Landuyt B., Highley M. S. et al. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 2004; 56 (4): 549-580.
  18. Namikoshi T., Satoh M., Horike H. et al. Implication of peritubular capillary loss and altered expression of vascular endothelial growth factor in IgA nephropathy. Nephron Physiol. 2006; 102 (1): 9-16.
  19. Бобкова И. Н., Козловская Л. В., Рамеева А. С. и др. Клиническое значение определения в моче маркеров эндотелиальной дисфункции и факторов ангиогенеза в оценке тубулоинтерстициального фиброза при хроническом гломерулонефрите. Тер. арх. 2007; 79 (6): 10-15.
  20. Kang D. H., Joly А. Н., Oh S. W. et al. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J. Am. Soc. Nephrol. 2001; 12 (7): 1434-1447.
  21. Kang D. H., Hughes J., Mazzali M. et al. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J. Am. Soc. Nephrol. 2001.
  22. Hugo C. The thrombospondin 1-TGF-beta axis in fibrotic renal disease. Nephrol. Dial. Transplant. 2003; 18 (7): 1241- 1245.
  23. Laderoute K. R., Alarcon R. M., Brody М. D. et al. Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. ClinCancer Res. 2000.
  24. Daniel C., Takabatake Y., Mizui M. et al. Antisense oligonucleotides against thrombospondin-1 inhibit activation of TGF-beta in fibrotic renal disease in the rat in vivo. Am. J. Pathol. 2003; 163 (3): 1185-1192.
  25. Rostoker G., Andrivet P., Pham I. et al. A modified Cockcroft-Gault formula taking into account the body surface area gives a more accurate estimation of the glomerular filtration rate. J. Nephrol. 2007; 20 (5): 576-585.
  26. Roncone D., Satoskar A., Nadasdy T. et al. Protemuria in a patient receiving anti-VEGF therapy for metastatic renal cell carcinoma. Nat. Clin. Pract. Nephrol. 2007; 3 (5): 287-293.
  27. Norman J. T., Fine L. G. Intrarenal oxygenation in chronic renal failure. Clin. Exp. Pharmacol. Physiol. 2006; 33 (10): 989-996.
  28. Choi Y. J., Chakraborty S., Nguyen V. et al. Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney: altered expression of vascular endothelial growth factor. Hurn Pathol. 2000; 31 (12): 1491-1497.
  29. Brenner B. M., Lawler E. V., Mackenzie H. S. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996; 49 (6): 1774-1777.
  30. Кутырина И. М., Рогов В. А., Шестакова М. В., Зверев К. В. Гиперфильтрация как фактор прогрессирования хронических заболеваний почек. Тер. архив. 1992; 64 (6): 10-15.
  31. Warnecke С., Zaborowska Z., Kurreck J. et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Нер3В and Kelly cells. FASEB J. 2004; 18 (12): 1462-1464.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies