Computer diffraction tomography: a comparative analysis of the use of controlled and wavelet filters for image processing

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper provides digital processing of 2D X-ray projection images of a Coulomb-type point defect in a Si(111) crystal recorded by a detector against the background of statistical Gaussian noise. A managed filter and a wavelet filter with a 4th-order Daubechies function are used. The efficiency of filtering 2D images is determined by calculating the relative quadratic deviations of the intensities of filtered and reference (noiseless) 2D images averaged over all points. A comparison of the calculated values of the relative deviations of the intensities shows that the considered methods work quite well and both, in principle, can be effectively used in practice for noise processing of X-ray diffraction images used for 3D reconstruction of nanoscale defects of crystal structures.

全文:

受限制的访问

作者简介

V. Bondarenko

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: bondarenko.v@crys.ras.ru
俄罗斯联邦, 119333 Moscow

S. Rekhviashvili

Institute of Applied Mathematics and Automation KBSC RAS

Email: bondarenko.v@crys.ras.ru
俄罗斯联邦, 360000 Nalchik

F. Chukhovskii

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”; Institute of Applied Mathematics and Automation KBSC RAS

Email: bondarenko.v@crys.ras.ru
俄罗斯联邦, 119333 Moscow; 360000 Nalchik

参考

  1. Asadchikov V., Buzmakov A., Chukhovskii F. et al. // J. Appl. Cryst. 2018. V. 51. P. 1616. https://doi.org/10.1107/S160057671801419X
  2. Danilewsky A.N., Wittge J., Croell A. et al. // J. Cryst. Growth. 2011. V. 318. P. 1157. https://doi.org/10.1016/j.jcrysgro.2010.10.199
  3. Danilewsky A., Helfen L., Hamann E., Baumbach T. // Phys. Rev. Lett. 2017. V. 119. P. 215504. https://doi.org/10.1103/PhysRevLett.119.215504
  4. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Acta Cryst. A. 2020. V. 76. P. 16. https://doi.org/10.1107/S2053273320000145
  5. Бондаренко В.И., Конарев П.В., Чуховский Ф.Н. // Кристаллография. 2020. Т. 65. № 6. С. 845. https://doi.org/10.31857/S0023476120060090
  6. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Crystals. 2023. V. 13. P. 561. https://doi.org/10.3390/cryst13040561
  7. Yang W., Hong J.-Y., Kim J.-Y. et al. // Sensors. 2020. V. 20. P. 3063. https://doi.org/10.3390/s20113063
  8. Hendriksen A.A., Bührer M., Leone L. et al. // Sci. Rep. 2021. V. 11. P. 11895. https://doi.org/10.1038/s41598-021-91084-8
  9. Liu N., Schumacher T. // Sensors. 2020. V. 20. P. 1423. https://doi.org/10.3390/s20051423
  10. Hamming R.W. Numerical Methods for Scientists and Engineers. Dover Publications, 2012. 752 p.
  11. He K., Sun J., Tang X. // IEEE Trans. Pattern Anal. Machine Intell. 2013. V. 35. № 6. P. 1397. https://doi.org/10.1109/TPAMI.2012.213
  12. Karumuri R., Kumari S.A. // IEEE2nd International Conference on Communication and Electronics Systems (ICCES), 2017. p. 545. https://doi.org/10.1109/CESYS.2017.8321137
  13. Li Z., Zheng J., Zhu Z. et al. // IEEE Trans. Image Process. 2015. V. 24. P. 120. https://doi.org/10.1109/TIP.2014.2371234
  14. Caraffa L., Tarel J.P., Charbonnier P. // IEEE Trans. Image Process. 2015. V. 24. № 4. P. 1199. https://doi.org/10.1109/TIP.2015.2389617
  15. Ham B., Cho M., Ponce J. // IEEE Trans. Pattern Anal. Mach. Intell. 2018. V. 40. № 1. P. 192. https://doi.org/10.1109/TPAMI.2017.2669034
  16. Sun Z., Han B., Li J. et al. // IEEE Trans. Image Process. 2020. V. 29. P. 500. https://doi.org/10.1109/TIP.2019.2928631
  17. Pham C.C., Ha S.V.U., Jeon J.W. // Pacific-Rim Symp. on Image and Video Technology, Gwangju, Republic of Korea. 2011. P. 323. https://doi.org/10.1007/978-3-642-25367-6_29
  18. Pham C.C., Jeon J.W. // 19th IEEE Int. Conf. on Image Processing. Orlando, FL, USA. 2012. P. 993. https://doi.org/10.1109/icip.2012.6467522
  19. Tsai C.L., Tu W.C., Chien S.Y. // IEEE Int. Conf. on Image Processing (ICIP), Québec City, Québec, Canada. 2015. P. 43. https://doi.org/10.1109/ICIP.2015.7350756
  20. Zhang Y.Q., Ding Y., Liu J. // IET Image Process. 2013. V. 7. № 3. P. 270. https://doi.org/10.1049/iet-ipr.2012.0351
  21. Shujin Zhu, Zekuan Yu // IET Image Process. 2020. V. 14. № 11. P. 2561. https://doi.org/10.1049/iet-ipr.2019.1471
  22. Рехвиашвили С.Ш. // Письма в ЖТФ. 2002. Т. 28. № 6. С. 46.
  23. Потапов А.А., Рехвиашвили С.Ш. // ЖТФ. 2018. Т. 88. № 6. С. 803. https://doi.org/10.21883/JTF.2018.06.46008.2159
  24. Mallat S. A Wavelet Tour of Signal Processing. The Sparse Way. 3rd Edition. Academic Press, 2008. 832 p.
  25. Дремин И.М., Иванов О.В., Нечитайло В.А. // Успехи физ. наук. 2001. Т. 171. № 5. С. 465. https://doi.org/10.3367/UFNr.0171.200105a.0465
  26. Welstead S. Fractal and Wavelet Image Compression Techniques. SPIE Publications, 1999. 254 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024