MICROSTRUCTURE OF A CrSi2 TRANSITION LAYER PRODUCED BY HOT PRESSING OF Cr AND Si

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Hot pressing of a Si single crystal in the bulk of electrolytic Cr powder at 1213 K, with subsequent annealing in air, leads to the formation of an intermediate polycrystalline silicide layer at the interface between the initial components. The phase composition and microstructure of the transition layer and its vicinity were investigated by scanning electron microscopy, X-ray energy-dispersive microanalysis, and electron backscatter diffraction. The transition layer has a crystal structure of the hexagonal phase of chromium disilicide (sp. gr. P6222). An additional annealing up to 120 h leads to insignificant recrystallization of small grains into larger ones.

Sobre autores

M. Lukasov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: klechvv@crys.ras.ru
Россия, Москва

N. Arkharova

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: natalya.arkharova@yandex.ru
Россия, Москва

A. Orekhov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: klechvv@crys.ras.ru
Россия, Москва

E. Rakova

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: klechvv@crys.ras.ru
Россия, Москва

F. Solomkin

Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia

Email: klechvv@crys.ras.ru
Россия, Санкт-Петербург

V. Klechkovskaya

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Autor responsável pela correspondência
Email: klechvv@crys.ras.ru
Россия, Москва

Bibliografia

  1. Burkov A.T., Ivanov Y.I. // Silicide Thermoelectrics. In Advanced Thermoelectric Materials / Ed. Park C.R. 2019. V. 165.
  2. Gel’d P.V., Sidorenko F.A. // Silicides of Transition Metals of the Fourth Period. M.: Metallurgiya, 1971. P. 90.
  3. Gokhale A.B., Abbaschian G.J. // J. Phase Equilibria. 1987. V. 8. P. 474. https://doi.org/10.1007/BF02893156
  4. Okamoto H. // J. Phase Equilibria. 2001. V. 22 P. 593. https://doi.org/10.1361/105497101770332866
  5. Boren B. // Archive Chem., Mineral. Geol. 1933. V. 11. P. 1.
  6. Dauben C.H., Templeton D.H., Myers C.E. // J. Phys. Chem. 1956. V. 60. P. 443. https://doi.org/10.1021/j150538a015
  7. Tanaka K., Nawata K., Koiwa M. et al. // Mat. Res. Soc. Symp. Proc. 2001. V. 646. P. 4.3.1.
  8. Соломкин Ф.Ю., Суворова Е.И., Зайцев В.К. и др. // ЖТФ. 2011. Т. 81. № 2. С. 147.
  9. Соломкин Ф.Ю., Зайцев В.К., Новиков С.В. и др. // ЖТФ. 2013. Т. 83. № 2. С. 141.
  10. Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф. и др. // ЖТФ. 2010. Т. 80. № 1. С. 152.
  11. Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф. и др. // ЖТФ. 2010. Т. 80. № 5. С. 157.
  12. Fedorov M., Zaitsev V. // Thermoelectrics Handbook: Macro to Nano / Ed. Rowe D.M. N.Y.: CRC press, 2006. P. 31.
  13. Burkov A., Vinzelberg H., Schumann J. et al. // J. Appl. Phys. 2004. V. 95. № 12. P. 7903.
  14. Novikov S.V., Burkov A.T., Schumann J. // J. Electron. Mater. 2014. V. 43. № 6. P. 2420.
  15. Novikov S.V., Burkov A.T., Schumann J. // J. Alloys Compd. 2013. V. 557. P. 239.
  16. Hielscher R., Schaeben C. // J. Appl. Cryst. 2008. V. 41. P. 1024.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (925KB)
4.

Baixar (3MB)
5.

Baixar (2MB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023