Characterization and photocatalytic properties of zno tetrapods synthesized by high-temperature pyrolysis
- Autores: Krasnova V.V.1, Muslimov A.E.1, Lavrikov A.S.1, Zadorozhnaya L.A.1, Orudzhev F.F.2, Gulakhmedov R.R.2, Kanevsky V.M.1
-
Afiliações:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Dagestan State University
- Edição: Volume 69, Nº 3 (2024)
- Páginas: 549-556
- Seção: CRYSTAL GROWTH
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673196
- DOI: https://doi.org/10.31857/S0023476124030215
- EDN: https://elibrary.ru/XNMHNT
- ID: 673196
Citar
Resumo
The presented work presents the structural and morphological characterization and the results of studies of luminescent, photocatalytic properties of ZnO tetrapods synthesized by the method of high-temperature pyrolysis. It has been shown that the morphology and structural parameters of ZnO tetrapods are determined by the location in the synthesis zone (correlated with the distance from the air inflow window). All samples were characterized by pseudo-three-dimensional morphology of tetrapods. A correlation was found between luminescent properties and photocatalytic activity of tetrapods. The highest photodegradation rates of methylene blue under ultraviolet radiation were demonstrated by ZnO tetrapods grown in the zones closest and farthest from the window (rate constants 54 × 10–3 min–1 and 50 × 10–3 min–1, respectively).
Texto integral

Sobre autores
V. Krasnova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: amuslimov@mail.ru
Rússia, Moscow
A. Muslimov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Autor responsável pela correspondência
Email: amuslimov@mail.ru
Rússia, Moscow
A. Lavrikov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: amuslimov@mail.ru
Rússia, Moscow
L. Zadorozhnaya
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: amuslimov@mail.ru
Rússia, Moscow
F. Orudzhev
Dagestan State University
Email: amuslimov@mail.ru
Rússia, 367001, Makhachkala
R. Gulakhmedov
Dagestan State University
Email: amuslimov@mail.ru
Rússia, 367001, Makhachkala
V. Kanevsky
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: amuslimov@mail.ru
Rússia, Moscow
Bibliografia
- Baaloudj O., Assadi I., Nasrallah N. et al. // J. Water Process Eng. 2021. V. 42. P. 102089. https://doi.org/10.1016/j.jwpe.2021.102089
- Rui Z., Wu S., Peng C. et al. // Chem. Eng. J. 2014. V. 243. P. 254. https://doi.org/10.1016/j.cej.2014.01.010
- Turkten N., Bekbolet M. // J. Photochem. Photobiol. A. Chem. 2020. P. 112748. https://doi.org/10.1016/j.jphotochem.2020.112748
- Sung-Gyu H., Sung-Il J., Goo-Hwan J. // Curr. Appl. Phys. 2023. V. 46. P. 46. https://doi.org/10.1016/j.cap.2022.12.004
- Mishra Y.K., Modi G., Cretu V. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 26. P. 14303. https://doi.org/10.1021/acsami.5b02816
- Sulciute A., Nishimura K., Gilshtein E. et al. // J. Phys. Chem. C. 2021. V. 125. P. 1472. https://doi.org/10.1021/acs.jpcc.0c08459
- Wang J., Xia Y., Dong Y. et al. // Appl. Catal. B. Environ. 2016. V. 192. P. 8. https://doi.org/10.1016/j.apcatb.2016.03.040
- Orudzhev F., Muslimov A., Selimov D. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 16338. https://doi.org/10.3390/ijms242216338
- Fichtl M.B., Schumann J., Kasatkin I. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 7043. https://doi.org/10.1002/anie.201400575
- Kurtz M., Strunk J., Hinrichsen O. et al. // Angew. Chem. Int. Ed. 2005. V. 44. P. 2790. https://doi.org/10.1002/anie.200462374
- Muslimov A., Antipov S., Gadzhiev M. et al. // Appl. Sci. 2023. V. 13. P. 12195. https://doi.org/10.3390/app132212195
- Manna L., Milliron D., Meisel A. // Nat. Mater. 2003. V. 2. P. 382. https://doi.org/10.1038/nmat902
- Ding Y., Wang Z.L., Sun T. et al. // Appl. Phys. Lett. 2007. V. 90. P. 153510. https://doi.org/10.1063/1.2722671
- Kumari C., Pandey A., Dixit A. // J. Alloys Compd. 2018. V. 735. P. 2318. https://doi.org/10.1016/j.jallcom.2017.11.377
- Li X., Wang Y., Liu W. et al. // Mater. Lett. 2012. V. 85. P. 25. https://doi.org/10.1016/j.matlet.2012.06.107
- Zhou T., Hu M., He J. et al. // CrystEngComm. 2019. V. 21. P. 5526. https://doi.org/10.1039/c9ce01073d
- Larbah Y., Adnane M., Sahraoui T. // Mater. Sci.-Poland. 2015. V. 33. P. 491. https://doi.org/10.1515/msp-2015-0062
- Rakov E.G. // Russ. Chem. Rev. 2007. V. 76. P. 1. https://doi.org/10.1070/RC2007v076n01ABEH003641
- Ahn C.H., Kim Y.Y., Kim D.C. et al. // J. Appl. Phys. 2009. V. 105. P. 013502. https://doi.org/10.1063/1.3054175
- Cao B., Cai W., Zeng H. // Appl. Phys. Lett. 2006. V. 88. P. 161101. https://doi.org/10.1063/1.2195694
- Paulauskas I.E., Jellison G.E., Boatner L.A. et al. // Int. J. Electrochem. 2011. P. 563427. https://doi.org/10.4061/2011/563427
Arquivos suplementares
