Characterization and photocatalytic properties of zno tetrapods synthesized by high-temperature pyrolysis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The presented work presents the structural and morphological characterization and the results of studies of luminescent, photocatalytic properties of ZnO tetrapods synthesized by the method of high-temperature pyrolysis. It has been shown that the morphology and structural parameters of ZnO tetrapods are determined by the location in the synthesis zone (correlated with the distance from the air inflow window). All samples were characterized by pseudo-three-dimensional morphology of tetrapods. A correlation was found between luminescent properties and photocatalytic activity of tetrapods. The highest photodegradation rates of methylene blue under ultraviolet radiation were demonstrated by ZnO tetrapods grown in the zones closest and farthest from the window (rate constants 54 × 10–3 min–1 and 50 × 10–3 min–1, respectively).

Texto integral

Acesso é fechado

Sobre autores

V. Krasnova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: amuslimov@mail.ru
Rússia, Moscow

A. Muslimov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: amuslimov@mail.ru
Rússia, Moscow

A. Lavrikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: amuslimov@mail.ru
Rússia, Moscow

L. Zadorozhnaya

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: amuslimov@mail.ru
Rússia, Moscow

F. Orudzhev

Dagestan State University

Email: amuslimov@mail.ru
Rússia, 367001, Makhachkala

R. Gulakhmedov

Dagestan State University

Email: amuslimov@mail.ru
Rússia, 367001, Makhachkala

V. Kanevsky

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: amuslimov@mail.ru
Rússia, Moscow

Bibliografia

  1. Baaloudj O., Assadi I., Nasrallah N. et al. // J. Water Process Eng. 2021. V. 42. P. 102089. https://doi.org/10.1016/j.jwpe.2021.102089
  2. Rui Z., Wu S., Peng C. et al. // Chem. Eng. J. 2014. V. 243. P. 254. https://doi.org/10.1016/j.cej.2014.01.010
  3. Turkten N., Bekbolet M. // J. Photochem. Photobiol. A. Chem. 2020. P. 112748. https://doi.org/10.1016/j.jphotochem.2020.112748
  4. Sung-Gyu H., Sung-Il J., Goo-Hwan J. // Curr. Appl. Phys. 2023. V. 46. P. 46. https://doi.org/10.1016/j.cap.2022.12.004
  5. Mishra Y.K., Modi G., Cretu V. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 26. P. 14303. https://doi.org/10.1021/acsami.5b02816
  6. Sulciute A., Nishimura K., Gilshtein E. et al. // J. Phys. Chem. C. 2021. V. 125. P. 1472. https://doi.org/10.1021/acs.jpcc.0c08459
  7. Wang J., Xia Y., Dong Y. et al. // Appl. Catal. B. Environ. 2016. V. 192. P. 8. https://doi.org/10.1016/j.apcatb.2016.03.040
  8. Orudzhev F., Muslimov A., Selimov D. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 16338. https://doi.org/10.3390/ijms242216338
  9. Fichtl M.B., Schumann J., Kasatkin I. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 7043. https://doi.org/10.1002/anie.201400575
  10. Kurtz M., Strunk J., Hinrichsen O. et al. // Angew. Chem. Int. Ed. 2005. V. 44. P. 2790. https://doi.org/10.1002/anie.200462374
  11. Muslimov A., Antipov S., Gadzhiev M. et al. // Appl. Sci. 2023. V. 13. P. 12195. https://doi.org/10.3390/app132212195
  12. Manna L., Milliron D., Meisel A. // Nat. Mater. 2003. V. 2. P. 382. https://doi.org/10.1038/nmat902
  13. Ding Y., Wang Z.L., Sun T. et al. // Appl. Phys. Lett. 2007. V. 90. P. 153510. https://doi.org/10.1063/1.2722671
  14. Kumari C., Pandey A., Dixit A. // J. Alloys Compd. 2018. V. 735. P. 2318. https://doi.org/10.1016/j.jallcom.2017.11.377
  15. Li X., Wang Y., Liu W. et al. // Mater. Lett. 2012. V. 85. P. 25. https://doi.org/10.1016/j.matlet.2012.06.107
  16. Zhou T., Hu M., He J. et al. // CrystEngComm. 2019. V. 21. P. 5526. https://doi.org/10.1039/c9ce01073d
  17. Larbah Y., Adnane M., Sahraoui T. // Mater. Sci.-Poland. 2015. V. 33. P. 491. https://doi.org/10.1515/msp-2015-0062
  18. Rakov E.G. // Russ. Chem. Rev. 2007. V. 76. P. 1. https://doi.org/10.1070/RC2007v076n01ABEH003641
  19. Ahn C.H., Kim Y.Y., Kim D.C. et al. // J. Appl. Phys. 2009. V. 105. P. 013502. https://doi.org/10.1063/1.3054175
  20. Cao B., Cai W., Zeng H. // Appl. Phys. Lett. 2006. V. 88. P. 161101. https://doi.org/10.1063/1.2195694
  21. Paulauskas I.E., Jellison G.E., Boatner L.A. et al. // Int. J. Electrochem. 2011. P. 563427. https://doi.org/10.4061/2011/563427

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diagram (top view in section) of growth zones of ZnO tetrapods.

Baixar (128KB)
3. Fig. 2. Microscopic images of ZnO tetrapods: a – zone 1, b – zone 2, c – zone 3, d – zone 4.

Baixar (469KB)
4. Fig. 3. Diffraction patterns of ZnO tetrapods grown in zones 1–4.

Baixar (118KB)
5. Fig. 4. PL spectra of ZnO tetrapods grown in zones 1–4 (curve numbers correspond to zone numbers). Inset: result of deconvolution of the green luminescence band of ZnO tetrapods (zone 1); solid line 1 – experiment, dotted line 2 – result of fitting.

Baixar (182KB)
6. Fig. 5. Optical absorption spectra of MS dye solutions exposed to UV radiation (253.7 nm, 180 μW/cm2) (a) and determination of the reaction rate constant (k, min–1) (b) in the presence of different types of ZnO tetrapods. C is the concentration of MS at time t from the start of irradiation, C0 is the initial concentration of MS (1 mg/l). Designations in (a): 0 – 0 min, 1 – 10 min, 2 – 20 min, 3 – 30 min, 4 – 60 min. Designations in (b): 1–4 – zones 1–4, respectively, 5 – photolysis.

Baixar (139KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024