Characterization and photocatalytic properties of zno tetrapods synthesized by high-temperature pyrolysis
- Authors: Krasnova V.V.1, Muslimov A.E.1, Lavrikov A.S.1, Zadorozhnaya L.A.1, Orudzhev F.F.2, Gulakhmedov R.R.2, Kanevsky V.M.1
-
Affiliations:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Dagestan State University
- Issue: Vol 69, No 3 (2024)
- Pages: 549-556
- Section: CRYSTAL GROWTH
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673196
- DOI: https://doi.org/10.31857/S0023476124030215
- EDN: https://elibrary.ru/XNMHNT
- ID: 673196
Cite item
Abstract
The presented work presents the structural and morphological characterization and the results of studies of luminescent, photocatalytic properties of ZnO tetrapods synthesized by the method of high-temperature pyrolysis. It has been shown that the morphology and structural parameters of ZnO tetrapods are determined by the location in the synthesis zone (correlated with the distance from the air inflow window). All samples were characterized by pseudo-three-dimensional morphology of tetrapods. A correlation was found between luminescent properties and photocatalytic activity of tetrapods. The highest photodegradation rates of methylene blue under ultraviolet radiation were demonstrated by ZnO tetrapods grown in the zones closest and farthest from the window (rate constants 54 × 10–3 min–1 and 50 × 10–3 min–1, respectively).
Full Text

About the authors
V. V. Krasnova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: amuslimov@mail.ru
Russian Federation, Moscow
A. E. Muslimov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Author for correspondence.
Email: amuslimov@mail.ru
Russian Federation, Moscow
A. S. Lavrikov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: amuslimov@mail.ru
Russian Federation, Moscow
L. A. Zadorozhnaya
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: amuslimov@mail.ru
Russian Federation, Moscow
F. F. Orudzhev
Dagestan State University
Email: amuslimov@mail.ru
Russian Federation, 367001, Makhachkala
R. R. Gulakhmedov
Dagestan State University
Email: amuslimov@mail.ru
Russian Federation, 367001, Makhachkala
V. M. Kanevsky
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: amuslimov@mail.ru
Russian Federation, Moscow
References
- Baaloudj O., Assadi I., Nasrallah N. et al. // J. Water Process Eng. 2021. V. 42. P. 102089. https://doi.org/10.1016/j.jwpe.2021.102089
- Rui Z., Wu S., Peng C. et al. // Chem. Eng. J. 2014. V. 243. P. 254. https://doi.org/10.1016/j.cej.2014.01.010
- Turkten N., Bekbolet M. // J. Photochem. Photobiol. A. Chem. 2020. P. 112748. https://doi.org/10.1016/j.jphotochem.2020.112748
- Sung-Gyu H., Sung-Il J., Goo-Hwan J. // Curr. Appl. Phys. 2023. V. 46. P. 46. https://doi.org/10.1016/j.cap.2022.12.004
- Mishra Y.K., Modi G., Cretu V. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 26. P. 14303. https://doi.org/10.1021/acsami.5b02816
- Sulciute A., Nishimura K., Gilshtein E. et al. // J. Phys. Chem. C. 2021. V. 125. P. 1472. https://doi.org/10.1021/acs.jpcc.0c08459
- Wang J., Xia Y., Dong Y. et al. // Appl. Catal. B. Environ. 2016. V. 192. P. 8. https://doi.org/10.1016/j.apcatb.2016.03.040
- Orudzhev F., Muslimov A., Selimov D. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 16338. https://doi.org/10.3390/ijms242216338
- Fichtl M.B., Schumann J., Kasatkin I. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 7043. https://doi.org/10.1002/anie.201400575
- Kurtz M., Strunk J., Hinrichsen O. et al. // Angew. Chem. Int. Ed. 2005. V. 44. P. 2790. https://doi.org/10.1002/anie.200462374
- Muslimov A., Antipov S., Gadzhiev M. et al. // Appl. Sci. 2023. V. 13. P. 12195. https://doi.org/10.3390/app132212195
- Manna L., Milliron D., Meisel A. // Nat. Mater. 2003. V. 2. P. 382. https://doi.org/10.1038/nmat902
- Ding Y., Wang Z.L., Sun T. et al. // Appl. Phys. Lett. 2007. V. 90. P. 153510. https://doi.org/10.1063/1.2722671
- Kumari C., Pandey A., Dixit A. // J. Alloys Compd. 2018. V. 735. P. 2318. https://doi.org/10.1016/j.jallcom.2017.11.377
- Li X., Wang Y., Liu W. et al. // Mater. Lett. 2012. V. 85. P. 25. https://doi.org/10.1016/j.matlet.2012.06.107
- Zhou T., Hu M., He J. et al. // CrystEngComm. 2019. V. 21. P. 5526. https://doi.org/10.1039/c9ce01073d
- Larbah Y., Adnane M., Sahraoui T. // Mater. Sci.-Poland. 2015. V. 33. P. 491. https://doi.org/10.1515/msp-2015-0062
- Rakov E.G. // Russ. Chem. Rev. 2007. V. 76. P. 1. https://doi.org/10.1070/RC2007v076n01ABEH003641
- Ahn C.H., Kim Y.Y., Kim D.C. et al. // J. Appl. Phys. 2009. V. 105. P. 013502. https://doi.org/10.1063/1.3054175
- Cao B., Cai W., Zeng H. // Appl. Phys. Lett. 2006. V. 88. P. 161101. https://doi.org/10.1063/1.2195694
- Paulauskas I.E., Jellison G.E., Boatner L.A. et al. // Int. J. Electrochem. 2011. P. 563427. https://doi.org/10.4061/2011/563427
Supplementary files
